A Black-Box Sensitization Attack on SAT-Hard
Instances 1n Logic Obfuscation

Isaac McDaniel', Michael Zuzak?, and Ankur Srivastaval
!Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, USA
2Department of Computer Engineering, Rochester Institute of Technology, Rochester, NY, USA
ilm@umd.edu, mjzeec @rit.edu, ankurs@umd.edu

Abstract—Logic obfuscation is a prominent approach to pro-
tect intellectual property within integrated circuits during fabri-
cation. In response to logic obfuscation, the Boolean satisfiability
attack was developed and demonstrated to unlock a great deal of
existing obfuscation configurations. This drove the development
of new SAT-resistant obfuscation countermeasures. Some of
these, including Full-Lock and InterLock, resist SAT attacks
by inserting SAT-hard instances, rapidly scaling the runtime of
each SAT attack iteration. In this work, we demonstrate that
while such countermeasures resist SAT-style attack strategies, an
attacker with access to the inputs and outputs of the SAT-hard
instance Full-Lock has inserted into an oracle circuit can infer the
design’s intended functionality in linear time, thereby unlocking
the circuit. We also observe that this class of obfuscation leaves
most of the original design topology intact and show how this
enables an attacker to sensitize the SAT-hard instance within
a black-box oracle and make inferences about the instance’s
input-output relationship from the oracle’s primary inputs and
outputs. We develop a novel attack which uses this leakage
to allow an attacker to efficiently unlock designs obfuscated
with Full-Lock without the special assumption of access to
the SAT-hard instance’s inputs and outputs. This recovers the
intellectual property and renders these obfuscation techniques
insecure. We empirically demonstrate the potency of our novel
sensitization attack against benchmark circuits obfuscated with
SAT-hard instances. Qur proposed attack was able to unlock all
6 benchmark circuits containing 384-bit keys and 3 out of 4
benchmarks with a 960-bit key within 48 hours. In comparison,
the conventional SAT attack was only able to unlock 3 of 6
benchmarks with 384 key bits and none of the 4 benchmarks
with 960 key bits in the same 48 hour timeout period.

Index Terms—Logic Obfuscation, Full-Lock, Untrusted
Foundry, Reverse Engineering

I. INTRODUCTION

The increasing cost and complexity of semiconductor fab-
rication has driven integrated circuit (IC) designers to rely
on unaffiliated and untrusted third parties for manufacturing.
Such reliance raises security concerns due to the capability of
untrusted foundries to reverse-engineer, pirate, and overpro-
duce intellectual property using the design files provided for
fabrication [1]. Such an approach exposes IC design houses
to substantial financial and security risks.

Logic obfuscation (also known as logic locking) has been
developed to mitigate these security threats during fabrication.
Techniques within this family integrate auxiliary logic into
a combinational circuit driven by both internal logic signals
and a number of additional primary inputs, whose values are
collectively referred to as a key. In this way, the functionality
of the design becomes dependent on the value of this key,
and the design house protects the secret key, the key value

This work was supported by NSF grant 1953285.

which produces the intended functionality. By withholding
this secret key from an untrusted fabrication partner, the
intended functionality of a design is hidden. Such an approach
mitigates security threats during fabrication. See [2], [3] for a
comprehensive survey of logic obfuscation research.

In response to logic obfuscation, a family of Boolean
satisfiability attacks, known as SAT attacks, were developed
to unlock them [4]-[6]. These iterative attacks make the
assumption that the attacker has access to a black-box oracle
which can be queried for primary output values corresponding
to the applied primary inputs. In one iteration of the original
SAT attack, the attacker formulates a Boolean satisfiability
(SAT) problem which is satisfied by two key values which
are consistent with all previous oracle queries but produce a
different primary output for at least one primary input value.
The attacker then applies that input for its next oracle query.
This ensures that at least one of the keys which satisfies the
current iteration cannot be used to satisfy the SAT problem in
the next iteration because at most one of these can produce
the correct primary outputs when the chosen input is applied.

The potency of SAT-style attacks against logic obfusca-
tion has driven the development of SAT-resilient obfuscation
techniques. One common approach to achieve SAT resilience
is to scale the number of SAT attack iterations required to
unlock the circuit by limiting the number of corrupted input-
output pairs caused by each wrong key, as derived in [7], [8].
This family of approaches includes prominent techniques such
as [9]-[15]. While such approaches certainly achieve SAT
resilience, they are limited in the amount of error they can
inject, prompting concerns regarding their efficacy in securing
an obfuscated system as a whole [7], [16]. To address these
limitations, a second approach to SAT-resilient obfuscation
techniques was developed leveraging SAT-hard instances to
rapidly scale the runtime of successive SAT attack iterations,
rather than increasing the number of iterations required to
unlock the design [17], [18]. This family includes techniques
such as Full-Lock [19] and Interlock [20]. The advantage of
such an approach is that sizable error rates can be injected
while maintaining resilience to SAT-style attacks [19], [20].
In this work, we narrow our scope to obfuscation techniques
using this second approach.

A. Contributions

In this work, we explore Full-Lock and InterLock [19],
[20], which are logic obfuscation techniques which resist SAT-
style attacks by inserting SAT-hard instances to increase the
runtime of the SAT problem solved in each attack iteration. We
observe that the only obfuscation provided by these techniques

is the functionality of the inserted SAT-hard instance, with the
rest of the circuit topology remaining unchanged. We show
that for Full-Lock and InterLock, the functionality of the
SAT-hard instance, and by extension that of the obfuscated
design, can be learned from a polynomial number of its input-
output pairs. We exploit the topological rigidity of this type of
obfuscation, paired with a black-box oracle, to partially leak
these input-output pairs to a SAT-capable attacker attempting
to unlock Full-Lock. We develop an attack which uses this
leakage to reverse engineer the intended functionality of a
Full-Lock-obfuscated netlist faster than the SAT attack alone.
The contributions of this work can be summarized as follows:

e« We introduce a method for an attacker to learn the
intended functionality of the SAT-hard instance Full-Lock
places in a design using a linear number of observations
of its inputs and outputs in an oracle. Knowing this func-
tionality allows an attacker to de-obfuscate the design.

e We extend this method to the more recent InterLock,
which is similar to Full-Lock but uses a more complex
SAT-hard instance. We describe how an attacker can
manipulate the inputs to make the SAT-hard instance in
InterLock equivalent to the one in Full-Lock so that the
same analysis could be used to determine part of its func-
tionality. We then show how the remaining functionality
can be extracted in polynomial time.

« We formulate solvable problems whose solutions allow
a SAT-capable attacker to make partial observations of
Full-Lock’s SAT-hard instance by 1) applying specific
inputs to the SAT-hard instance in the oracle and 2)
inferring possible instance outputs from the oracle’s pri-
mary outputs. These are made possible through analysis
of the obfuscated netlist. The problems we solve do
not include the SAT-hard instance itself, bypassing the
security guarantees of Full-Lock.

« We formalize an attack methodology using these partial
observations. Each observation which is leaked com-
pletely exponentially reduces the functionality search
space and, if all observations are leaked in their entirety,
the attack completely de-obfuscates Full-Lock. Even if
observations cannot be determined precisely, a partial
solution is produced which the attacker can use to greatly
accelerate a secondary attack using an existing method.
Since Full-Lock resists current state of the art methods
such as the SAT attack, this allows counterfeit copies of
the unobfuscated design to be produced by an untrusted
foundry previously unable to do so.

« We empirically evaluate our attack against benchmark
circuits obfuscated with Full-Lock. After completing our
proposed attack to produce a partial solution, we launch
a secondary attack using an existing attack method to
recover the total functionality of the design. During the
experiment, our proposed attack unlocked benchmark
circuits within 48 hours even with very large SAT-hard
instances, including 3 of 4 benchmarks with 960 key bits
and all 6 benchmarks with 384 key bits. Conversely, the
conventional SAT attack could not unlock any bench-
marks with 960 key bits and only 3 of 6 benchmarks
with 384 key bits within the same 48 hours.

II. PRELIMINARIES
A. Attacker Model

In this work, we assume a SAT-capable adversary common
in recent logic obfuscation research, such as [7], [9]-[13],
[19], [20]. This adversary has access to 1) a locked netlist
for the obfuscated circuit, which can be obtained via reverse
engineering the GDSII files provided for fabrication, and 2)
a black-box oracle of the obfuscated circuit, which can be
obtained from IC test facilities or the open market. While the
secret key cannot be read from this oracle circuit, it does allow
the adversary to query specific inputs and identify the correct
corresponding output for the obfuscated circuit.

B. Obfuscation with Full-Lock

One class of SAT-resilient techniques exploits characteris-
tics of the Davis—Putnam-Logemann—Loveland (DPLL) algo-
rithm used to solve the SAT attack’s underlying SAT problem.
These techniques place instances in the design of modules
known to be SAT-hard, greatly increasing the runtime of
successive SAT iterations and resulting in infeasibly long SAT
attack runtimes to recover a functionally correct key.

In Full-Lock [19], which we primarily focus on in this work,
this module is a switching network whose functionality is
made key-dependent through the use of programmable logic
and routing (PLR) blocks. Each node in the network is a
switch-box (SwB) which may exchange the input to output
routing and invert each of 2 signals according to 3 key inputs.
As a result, the outputs of the instance are a permutation
and possible inversion of its inputs. Figure 1 displays the
construction of the switch-boxes present in Full-Lock as well
as a sample network topology and the placement of the SAT-
hard instance in the netlist.

Full-Lock is designed to take advantage of longer runtimes
for the DPLL algorithm for problems with a ratio of clauses
to variables in a certain range [19]. Multiplexers, which are
very numerous in the SAT-hard instance, introduce clauses and
variables to the SAT problem at this target ratio, increasing
the runtime of the DPLL algorithm. The advantage of such
an approach to obfuscation is that it is not fundamentally
limited in the amount of error it can inject [7], [8]. Rather than
hindering the SAT attack by reducing the number of inputs
which produce corrupted outputs, obfuscation methods such
as Full-Lock use the structure of the SAT-hard instance to
lengthen SAT solve time. This makes the design SAT-resistant
while still injecting sufficient error to prevent piracy.

III. ATTACKING FULL-LOCK BY QUERYING SAT-HARD
INSTANCE

In a design obfuscated with Full-Lock, there is in the
worst case one permutation of Full-Lock inputs which is
functionally equivalent to the black-box oracle [19]. In this
section, we show how an attacker can learn this single correct
permutation from an N-input SAT-hard instance with 2NN
queries of the exposed inputs and outputs of the instance.
While our attacker model does not allow direct access to these
signals, in subsequent sections we will develop a method for
an attacker to methodically leak the results of the SAT-hard
instance queries from a black-box oracle through analysis of
the obfuscated netlist.

This will require two steps: 1) sensitization of the SAT-
hard instance, covered in Section IV, and 2) inference of

SwB |—> Yo

SwB |—> Y1 SAT-

SwB I—» y2 - Hard y

SwB |—> y3

— —
I 5 S 0O
I %{D@»/z/ x0—] SWB swB]] SWB
Ko X —| SwB swB| JSWB
K, — —
7 2| o, X2*>|SWB
K] 1 1 X3 *’| SWB
Kj3
(a) (b)

(©

Fig. 1: Diagram of obfuscation with Full-Lock, showing (a) the key-driven switch-box (SwB) circuit which exchanges the routing
of two signals, (b) one possible switching network configuration which forms the SAT-hard instance, and (c) a visualization
of the instance with its fanin and fanout within the obfuscated netlist, with relevant signals labeled.

instance outputs, covered in Section V. The first is achieved
through analysis of the SAT-hard instance’s fanin cone in the
obfuscated netlist, while the second is done through analysis of
its fanout cone. Once this leakage is established, we formalize
an attack on Full-Lock in Section VI which makes a sequence
of queries of the oracle and attempts to leak the instance
functionality. This produces a partial solution, which can be
completed by a secondary attack using an existing method.

A. Signal Definitions

Our attacks depend on manipulation of the primary inputs
and outputs of the circuit as well as the inputs and outputs
of the SAT-hard instance. We define vectors of the latter as is
commonly done for primary inputs and outputs: the instance
input vector x and output vector y. These have the same length
N, since the function of the SAT-hard instance is to permute
its inputs. We will refer to the primary input vector as I and the
primary output vector as Q. The primary inputs and outputs are
part of the design topology before obfuscation, so the lengths
of I and O can take any value. Figure 1(c) shows a high-level
diagram of the SAT-hard instance and its fanin and fanout
cones, with all 4 of these signals labeled.

B. Revealing Permutation by Stepping Full-Lock Inputs

We can devise a method to learn the functionality of the
SAT-hard instance by dividing the problem into sub-problems
which can be solved individually to provide a partial solution.
Since the functionality of the instance is to permute its inputs,
to solve the problem all at once, as with the SAT attack, the
attacker would need to find the one correct permutation of
the inputs from all V! permutations of the inputs. However,
the attacker can break this down by choosing one input and
attempting to find which output it is permuted to, which has N
possible solutions. After solving this smaller problem, finding
the destination of the next input has only N — 1 possible
solutions, then N —2, and so on, until each input’s destination
has been found. By solving these smaller problems 1 at a time,
the attacker must consider only Zf\;l N — i solutions in total
to determine the functionality of the instance, compared to the

= Hfil N — 1 solutions considered by the holistic attack.

Now, we describe how the attacker can find the destination
of an input with 2 queries of the SAT-hard instance in an
oracle. Since the attacker can observe the inputs and outputs
of the instance directly, we will define these to also be the
primary inputs and outputs (I = x, O = y). First, we note

TABLE I: Sample I/O relationships showing how the function-
ality of a fully exposed SAT-hard instance can be learned in
linear time. If the instance has N permutation inputs, then the
functionality is learned after checking the oracle 2N times.

X y i Learned
Mapping
xi | 0000 | yJ | 1101
xi | 0001 | y? | 1111 | 2| =1 — gy
x2 | 0010 | y? [0101 | 4 | -z — y4
Xg 0100 y; 1100 1 —Tr3 — Y1
x5 | 1000 | y? | 1001 | 3 | —z4 — ys3

that each output is a function of only 1 input, and that this
output is the permutation destination of that input. Therefore,
if the attacker makes 1 query of the SAT-hard instance to
learn any input-output pairing, then changes 1 input bit, input
1€ 1,2,..., N, and makes another query, the only output bit
to change will be the changed input’s permutation destination,
output j € 1,2,..., N. We represent the input and output of
the first query as x} and yj, though j is not known from this
first query. The second query results are x5 and y3.

Here, for a Boolean vector u, we use the notation uy and
uj to represent 2 values of u which have a Hamming distance
of 1, with the single differing bit in the nth place. Thus, the
second input value x5 has x5, = m’l y for k # i and x5, =
ﬂwl ; and the second output has y2 k= yl x for k # j and

v5 i = ﬁyl for input ¢’s destination output j. The attacker
chooses 7, tfle input bit which changes, but must observe j,
the output bit which shows a response. With this process, the
attacker has learned the destination of an obfuscated signal
after observing just two SAT-hard instance input/output pairs.

After the attacker has learned the destination of 1 input, the
remaining undetermined functionality of the instance can be
represented as a permutation of the remaining N — 1 inputs,
since a permutation is a one-to-one mapping from the inputs
to the outputs and one of each has just been removed from
the problem. The same process is repeated iteratively until the
total functionality is known. Thus, the attacker can learn the
functionality of the SAT-hard instance in 2N oracle queries.

As an example, we examine the SAT-hard instance queries
in Figure 2, which produce an initial input-output pair x’ =
0000, y/ = 1101. Setting i = 1, the attacker then toggles bit 1
of x, and finds the I/O pair x% = 0001, y% = 1111, revealing
that the changing output is j = 2. From these two data points,

0 0 0 0 0 0
Vil L
SAT- SAT-
ard ard

H H
il PV

(a) (b) (©

Fig. 2: An example of learning the functionality of an exposed
SAT-hard instance. In (a) the attacker generates a reference 1/O
pair, and in (b) the attacker is able to compare a second I/O
pair and learn that the instance passes input [y to output Oj.
(c) shows the correct permutation after observing the example
data from Table 1.

E i X4 X3 X2 X1
T

Y4 Y3 Y2 Y1

— Oly —
I S 5Lo,
I, = =
Ko
K, o
BRE 5 0))
-2 i =
Ky
K3

exIl j
ex12

Fig. 3: Diagram of the SAT-hard instance used in InterLock,
showing the switch-box (SwB) circuit modified from Full-

Lock to include two extra inputs going to function blocks.
These replace the inverters originally present in Full-Lock.

the attacker infers that x, the first bit of x, is permuted to
12, the second bit of y. Now setting ¢ = 2, the attacker can
use the same first input x7 = 0000 and add a new query for
x2 = 0010. Finding y3 = 0101 reveals -5 is permuted to yy.

After iterating through each bit of x, the attacker has learned
the permutation of all 4 input bits and therefore knows the
logical function of the SAT-hard instance. This allows the
attacker to recreate the netlist of the circuit before obfuscation,
defeating the IP protection. Table I shows all of the I/O pairs
the attacker finds and the information learned from each one,
while Figure 2 graphically shows the first step of the process
as well as the mapping from X to y that the attacker constructs.

C. Extension to InterLock

The authors of Full-Lock have since introduced InterLock
[20], which improves Full-Lock by increasing the complexity
of the switch-boxes used in the SAT-hard instance. Recall that
after possibly switching their two inputs, Full-Lock switch-
boxes have a second stage of multiplexers which give them
the option to pass or invert each signal. InterLock replaces the
inverters with two-input gates, such as AND, OR, XOR, etc.
Each gate with logic function f; and inputs O}, the output
of the first multiplexer, and exzl;, a new input to the SAT-
hard instance added by InterLock. The latter pass from the
original circuit to each individual switch-box. The new gate
add part of the design functionality to the SAT-hard instance,
which prevents an attacker from simply removing the instance
to restore the netlist to its state prior to obfuscation. Figure 3
shows the new switch-box diagram introduced by InterLock.

This introduces 2 difficulties we must overcome to extend
the method we have developed in Section III-B to InterLock.
First, the outputs of the SAT-hard instance added by InterLock
are not always a permutation with possible inversion of its
inputs. Second, since each stage of the network could cause
a signal to pass through a gate, the attacker must learn which
functions f; with which other inputs exl; are applied to the
intermediate signals O.

Difficulty 1 can be addressed by assigning each exI; to
a certain value. Importantly, the attacker knows the function
fi of the gate each exI; goes to. Furthermore, for any 2-
input f;, there is some value of exl; such that f; = O} or
fi = —0Oj. We say that this value of exI; sensitizes f; to
O}. The attacker can set exI; to its sensitizing value so the
output of each switch-box, and therefore the entire SAT-hard
instance, is a permutation and possible inversion of its inputs,
as was the case for Full-Lock. The attacker can now use
the method previously described for Full-Lock to determine
the permutation destination of each SAT-hard instance input.
However, in this case, this does not give the total functionality
of the instance, since this analysis has been done for a special
case with constraints on the extra inputs exl;. To recover the
total functionality, the attacker must now drop these constraints
and address difficulty 2.

To learn which f; and exI; are applied to each input, the
attacker must manipulate each exI; to see which, if any, output
y; is affected. The attacker can toggle each exI; one at a
time to see whether it affects any output y;. If it does, the
attacker knows to apply f; to the corresponding input signal
after removing the SAT-hard instance. Otherwise, there are 2
explanations: 1) this ex; is unused and the corresponding f; is
bypassed, or 2) f; is not sensitized to exI; at the current value
of I;. To distinguish between these, a second pass through
exl; is needed. The attacker first inverts the value of every
instance input x; then again toggles each exI; which didn’t
affect any y; in the first pass. If some exI; produces no change
to the outputs this time, the attacker knows that this ex; is
not actually used, since every combination of O} and exI; has
been tried but the value of exl; has not affected the output.

Once this process is complete, the attacker knows every f;
and exl; which must be applied to each instance input, as
well as which instance output the resulting signal is permuted
to. Therefore, the attacker is able to replace the SAT-hard
instance in the obfuscated netlist with the intended function-
ality, unlocking the circuit. This attack methodology requires
in the worst case 4 oracle queries per switch-box. Since each
stage of the network has O(N) switch-boxes and there are
O(log(N)) stages in the network, this increases the complexity
of the attack from O(N) for Full-Lock to O(N log(N)) for
InterLock. While this does increase complexity, it can still be
completed in polynomial time, unlocking InterLock efficiently.

The methodologies in this section have assumed an attacker
with access to the inputs and outputs of the SAT-hard instance,
which is stronger than the SAT-capable attacker model. In
further sections, we will describe how our weaker attacker
model can leak enough information from a black-box oracle
to use these methods to attack Full-Lock even without direct
access to the inputs and outputs of the SAT-hard instance.
Although the rest of this paper is focused on an attack on a
design obfuscated with Full-Lock, the methods we describe in

Sections IV-VII can be adapted to apply to InterLock.
IV. SENSITIZATION OF THE SAT-HARD INSTANCE

Using the method in the previous section, an attacker with
input and output access to the SAT-hard instance in Full-
Lock can learn the permutation destination of one input in
constant time, and the block’s total functionality in linear time.
However, our attacker model assumes a black-box oracle, so
the only information directly available to the attacker is the
primary inputs and outputs of the authenticated circuit.

Applying our technique to the SAT-capable attacker model
requires analysis of the obfuscated netlist to select inputs for
an oracle query which will apply inputs x} and x5 to the SAT-
hard instance. To do this, we slightly generalize the attacker in
the previous section by allowing the primary inputs to differ
from the instance inputs (I # x), but still requiring the primary
outputs to be the same as the instance outputs (O =y).

We define a sensitizing input as a pair of primary input
values Ij,I5 which produce the SAT-hard instance inputs
xt,x5. We say that i is the sensitized input. The instance,
and in this case primary, outputs for the same inputs are
(y],¥3), where we say that j is the sensitized output. As
in the case where the attacker is able to directly query the
SAT-hard instance, j is the permutation destination of instance
input ¢. A successful attack in this case must find a sensitizing
input (I3,I) for every SAT-hard instance input ¢ € [1, N]
and observe its permutation destination to determine the total
functionality of the design.

Sensitizing inputs can be found efficiently by constructing
a Boolean satisfiability problem around the SAT-hard instance
fanin. To find a sensitizing input for instance input ¢, we create
two copies of the logic between the instance and the primary
inputs with input vectors I{ and I and output vectors x¢ and
x4. We will add logic to these to build a miter circuit. The
values of I, I} are the solution to the problem, so these are
not altered and remain the inputs of the miter circuit. Logic
added to the outputs x‘, x5 need to force them to meet the
requirements x} ; = —x4 ; and 2} , = x4 ., k # i. This can be
done by adding NV logic gates Gy, = fx(x 1,25), k € [1, N],
where f; is XOR and fx, k # i is XNOR. An N-input AND
gate, with each G} as an input, requires all of the output
conditions to be met in order to satisfy the single output of
the miter circuit. Since the miter, shown in Figure 4(a), is
only satisfied when the instance is sensitized at input 4, any
primary input values I3, I which satisfy the miter must be a
sensitizing input. Once the attacker has found (I; and I)), they
can be applied to the black-box oracle to observe the outputs
O’ = yJ and Of) = yJ, which reveal j is the permutation
destination of i.

In an arbitrary circuit design, it is also possible that the
miter circuit we have defined is found to be unsatisfiable.
This means that there are no two possible output values
which differ only at the desired bit. When this happens, it
is not possible to sensitize the SAT-hard instance to that bit,
and the permutation destination cannot be learned directly.
When this occurs, this attack can only partially recover the
functionality of the instance, but the reduction in the search
space is exponential with the number of SAT miters, allowing
a secondary attack using a conventional method to recover
the missing functionality. Since the secondary attack solves

a much smaller problem than the attacker initially faced, the
execution time of our attack combined with a secondary attack
is still much smaller than an attack using the same method as
the secondary attack from the beginning.

The efficiency of this part of the attack is determined by how
quickly sensitizing inputs can be found. Satisfying one miter
allows the attacker to learn the correct destination of 1 SAT-
hard instance input, each time reducing the effective number
of signals permuted by the obfuscation by 1 and pruning the
functionality search space exponentially. In the example from
the previous section, filling in each row of Table 1 would
require the attacker to solve one SAT problem. Recovering the
oracle’s total functionality requires solving N problems, one
for each SAT-hard input. This means the amount of time spent
on each SAT problem is the primary factor in determining
whether the attack is feasible.

Importantly, the miter circuit does not include the SAT-hard
instance itself, which is designed for attack resilience. In fact,
the security provided by Full-Lock depends fundamentally
on an attacker using the SAT attack being forced to include
the SAT-hard instance in a SAT problem formulation, so
our construction of a miter circuit which does not fall prey
to this trap bypasses the security guarantees of this logic
obfuscation technique. Furthermore, the duration of our novel
sensitization attack depends only on the topology of the design
before obfuscation, which affects the attacker’s ability to find
inputs to sensitize specific nodes in the circuit. Solving the
latter problem is an important step in IC testing, which has
presumably been performed on the target obfuscated design
since it is in production. The attacker is therefore confident that
sensitization problems using the netlist are feasible, and may
even have access to the same or similar commercial Automatic
Test Pattern Generation (ATPG) tools used to analyze the
design for legitimate purposes. Foundry-based attackers, one
potential identity of a SAT-capable attacker, are particularly
likely to have ready access to these tools. These ATPG tools
are very well developed, and are highly efficient for these
problems [21], [22]. They have also seen use in other security
applications [10], [11], [23].

The exclusion of the SAT-hard instance from SAT analysis
and the attacker’s confidence in the feasibility of the necessary
SAT problems make our attack very efficient compared to
conventional attacks, such as the SAT attack, which are
unaware of Full-Lock functionality, as these must include the
SAT-hard instance in their SAT formulations.

V. LEAKAGE OF SAT-HARD INSTANCE OUTPUTS

Now that we have established that an attacker can sensitize
the SAT-hard instance inside a black-box oracle, we move to
show how the outputs of the instance can be partially leaked
from the oracle. This problem is more difficult than finding
sensitizing inputs because in the latter, the attacker applies
known inputs and can precisely evaluate internal nodes in the
fanin of the SAT-hard instance. However, when attempting to
determine which SAT-hard instance output has inverted from
the change in the primary outputs seen in an oracle query,
there may be multiple fanout inputs (i.e., instance outputs)
which could produce the same observed results. This limits the
attacker to examining each fanout input and determining which
ones could have been the inverted signal, rather than solving

Fig. 4: (a) Miter circuit for finding a sensitizing input for
a SAT-hard instance input. (b) Miter circuit which tests an
observed output pattern for sensitivity to a particular input bit.
In both miter circuits, the inclusion of one XOR gate forces
the condition that x} and y] have a Hamming distance of 1
from x4 and y3.

one problem and producing a definite solution, as when finding
a sensitizing input.

The attacker knows that after applying a sensitizing input to
the oracle, one instance output j has inverted while all other
outputs remain the same. While the value of j is unknown,
the attacker can build a list of candidate outputs by testing
each instance output n € [1,N] to determine whether its
sensitization could have produced the primary output Of, O3
seen in the black-box oracle. Testing whether n could be the
sensitized output j requires the construction and solving of a
miter circuit similar to the one used to find sensitizing inputs.

When finding a sensitizing input, the miter circuit is formed
around 2 copies of the SAT-hard instance fanin. To test whether
an instance output could be sensitized, the miter is constructed
around copies of the instance fanout, with y; and y} as their
inputs and O] and O} as their outputs. Since the attacker is
interested in whether any value of yJ,y? is consistent with
the oracle query, these are also the input to the overall miter
circuit. To enforce the condition that output n is sensitized,
ie, yi, =, and yi , =3,k # n, logic gates G, =
Sl 4 Y2.1): K € [, N], where f, is XOR and fi,k # i is
XNOR. In addition, the attacker requires the satisfying value
of (yJ,y3) to produce the observed primary output Of, Q3.
This is done by adding a 2N-input AND gate which takes
as input every bit of O}, 0% or its inversion, depending on
that bit’s value in the oracle query. Finally, the output of this
AND gate is passed into an /N + 1-input AND along with the
outputs of each gate (G, which gives the miter output. The
structure of this miter is shown in Figure 4(b). If the miter is
satisfiable, then the instance output n must be added to the
list of candidates for j.

We use this analysis repeatedly to prune the search space of
the functionality of the SAT-hard instance. N oracle queries,
one which sensitizes each instance input, are needed, and each
oracle query requires N SAT problems to be solved, one for
each instance output. This results in N2 problems in total.
The degree of pruning of the search space depends on the
number of permutation destinations the attacker can rule out
for each sensitized input. For a single sensitized input i, i.e.
for each oracle query, if the attacker determines that m; of the

N outputs could not be the permutation destination j for i,
then the functionality search space is reduced by a factor of
N_Lmi. In the best case, the destination is determined exactly
when all but 1 output is ruled out, so m; = N — 1 and the
search space is reduced by a factor of V from N! to NV — 1!.
This is the same reduction as was seen in previous sections

when an input’s destination was determined.

A secondary attack is necessary when multiple instance
outputs could produce the oracle’s outputs when sensitized.
However, as in the previous section, the functionality of the
SAT-hard instance has already been extensively pruned, so
the 2 subsequent attacks still obtain a total solution more
quickly than an attack using only the secondary method. As
when finding sensitizing inputs, the efficiency of this leakage
analysis is determined by the efficiency of the available SAT
solver. Our attack continues to exclude the SAT-hard instance
from the SAT problem, giving it an advantage over existing
attacks such as the SAT attack.

VI. FULL-LOCK FUNCTIONALITY RECOVERY BY A
SAT-CAPABLE ATTACKER

Finally, let us consider our total attack surface. Generally,
an attacker has access only to the primary inputs I and outputs
O of a black-box oracle and there is logic between these and
inputs x and outputs y of the SAT-hard instance, so x # I and
y # O. This describes any Full-Lock implementation targeted
by any SAT-capable attacker.

With only access to the primary inputs and outputs of the
black-box oracle, the attacker must be able to sensitize the
inputs of the SAT-hard instance and then leak its possible out-
puts. This can be done by combining the prior two algorithms.
First, the attacker analyzes the instance fanin with the miter
in Figure 4(a) to find a sensitizing primary input I}, I for
each instance input ¢ € {1,...,N}. This can be performed
exactly as described in Section IV, since the nonempty fanout
cone of the SAT-hard instance does not affect the topology or
function of the fanin. The attacker queries the oracle for each
sensitizing input, but unlike in IV, this does not immediately
reveal the permutation that the SAT-hard instance performs.

Instead, though the attacker knows the inputs x to the SAT-
hard instance, its output y must be extrapolated from the
primary outputs O. This is identical to the scenario described
in Section V, so the same process can be applied here. The
attacker compares the oracle outputs O7, 0% to the instance
fanout and prunes the functionality search space by using
the miter in Figure 4(b) to evaluate which instance outputs
n € {1,..N} may have been the stimulated output j.

This attack generally leaves the attacker with only a partial
solution to the functionality of the SAT-hard instance, so a sec-
ondary attack using an existing methodology is used to identify
the exact functionality from the greatly reduced search space.
We repeat our earlier argument that even with the secondary
attack, our attack is more efficient than using the existing
methodology from the beginning because our sensitization
attack has greatly reduced the size of the remaining problem.
Additionally, our attack increases efficiency by not including
the SAT-hard instance in a SAT formulation. Avoiding the
SAT solver’s worst-case scenario this way is what allows it
to reduce the size of the problem faster than existing attacks.

VII. RECOVERY OF COMPLETE FUNCTIONALITY
THROUGH A SECONDARY ATTACK

Our sensitization attack can be completed much faster than
a traditional SAT attack, but generally produces only a partial
solution. This occurs for 2 reasons:

1) Our attack sensitizes SAT-hard instance inputs by learning
2 primary input vectors I, I which produce 2 instance
inputs X?, X4 which differ by a Hamming distance of
1, placing the single differing bit in a precise location.
This is a heavily constrained problem, and there may be
no solution to sensitize some inputs. When this occurs,
our attack will not be able to infer the destination of this
input, since it cannot observe its effects on the primary
outputs without other inputs also changing.

2) After observing two primary output vectors from the
oracle, our algorithm must determine which of the SAT-
hard instance output bits could have produced the query
results. However, multiple outputs could be capable of
this, so the attack is only able to determine a group
of candidate outputs, any one of which could be the
permutation destination of the sensitized input.

As has been discussed in Sections V and VI, the partial so-
lution produced by our methodology reduces the search space
by pruning the number of possible permutation destinations of
each SAT-hard instance input. While this does not fully unlock
the circuit, these results represent an exponential reduction in
the functionality search space. To fully unlock the obfuscated
circuit, we launch a second attack to recover the remaining
functionality. This secondary attack builds on the results of
our functional attack and is able to solve the greatly reduced
problem.

To set up the secondary attack, we take as output from
our novel sensitization attack a matrix S of Boolean values,
with rows representing SAT-hard instance inputs and columns
representing instance outputs. Matrix element s;; is False if
our attack concluded that j could not be the permutation
destination of ¢ and True otherwise. We have developed a
tool which uses this information to replace the SAT-hard
instance in the obfuscated netlist with N multiplexers, each
with an output that replaces an output of the removed SAT-
hard instance. A newly added key-driven select signal allows
the multiplexer to pass one of the N signals which were
previously the SAT-hard instance inputs which our attack did
not eliminate as possible sources of that output. The SAT-hard
instance was also capable of inverting its inputs, so a 2-input
multiplexer is added after each /V-input multiplexer which uses
another key-driven select signal to choose between the selected
instance input and its inversion. Since the SAT-hard instance
has been removed, the key-driven select signals are the only
key bits remaining in the netlist. The multiplexers are capable
of reproducing any functionality in the search space that the
original obfuscated netlist was capable of, so this operation
preserves the functionality of the design as a whole. The
secondary attack can be launched using this modified netlist
and the existing black-box oracle.

VIII. RESULTS

In this section we discuss the implementation of our attack
and present data gathered from testing it against benchmark
circuits locked using Full-Lock. We provide runtime data to

TABLE II: Sensitization attack and SAT attack durations for
various key sizes. Both attacks resulted in a timeout if the
circuit was not unlocked after 48 hrs (170,000 s). All times
are in seconds.

Circuit | Key | Sensitization | Secondary Total SAT
Size Attack Attack | Runtime Attack

Runtime Runtime Runtime

c1908 48 0.55 0.21 0.77 0.84
144 3.37 0.53 3.90 22.71

384 14.01 12.91 26.93 timeout

c2670 48 1.58 0.18 1.76 0.48
144 7.87 0.71 8.59 4.31

384 68.83 8458.36 8527.19 8708.47

c3540 48 2.46 0.61 3.07 0.56
144 11.02 2.92 13.94 59.24

384 48.74 13.16 61.90 timeout

960 438.07 288.03 726.10 timeout

¢5315 48 344 0.45 3.89 0.49
144 15.49 1.49 16.98 15.46

384 88.83 9.12 97.94 955.38

960 598.32 109.01 707.32 timeout

c7552 48 4.68 2.16 6.84 5.01
144 22.00 5.17 27.18 17.85

384 112.62 117.10 229.72 timeout

960 702.99 timeout timeout timeout

des 48 474 0.65 5.38 1.02
144 20.35 1.67 22.02 10.52

384 99.89 11.53 111.42 1733.37

960 619.47 53.63 673.10 timeout

demonstrate the feasibility of the attack against benchmarks
obfuscated with large SAT-hard instances.

The source code for our attack used the ABC synthesis
tool [24] to parse and model benchmark circuits locked with
Full-Lock [19]. We then extended the tool’s functionality to
implement the attack on 5 benchmarks selected from the
ISCAS ’85 suite [25] and 1 benchmark from MCNC20 [26],
each obfuscated with Full-Lock using 3 or 4 differently sized
SAT-hard instances. All benchmarks included logic between
the SAT-hard instance and both the primary inputs and outputs,
so a successful attack in our experiment required both input
sensitization and leakage of SAT-hard instance outputs. This
is the most general form of our attack, which can be launched
by any SAT-capable attacker.

To perform the attack, we prepared black-box oracles and
benchmark circuits obfuscated with Full-Lock in the Berkeley
Logic Interchange Format [27]. We created an extension of
ABC which extracts the SAT-hard instance fanin cone from the
obfuscated netlist, constructs the miter circuit in Figure 4(a),
and uses ABC’s SAT solver to find sensitizing inputs. It then
queries the oracle circuit and uses those results, along with
the fanout cone of the SAT-hard instance, to form the miter in
Figure 4(b) and leak information about the SAT-hard instance
functionality. Our ABC extension concludes by producing
a Boolean matrix recording which permutation destinations
are possible for each instance input, as described in Section
VII. We also built a tool which modifies the obfuscated
netlist to replace the SAT-hard instance with multiplexers, also
described in Section VII. We obtained a total solution from
the modified netlists by launching a secondary SAT attack with
the lazy-sat tool [4]. Our control data using the conventional
SAT attack was also taken with this tool.

We tested our attack against 6 benchmark circuits, first
measuring the runtime of the sensitization attack, which
produced a partial solution, and then the runtime of the
secondary attack which extracts the remaining functionality.

Each benchmark was obfuscated with each of 3 SAT-hard
instance sizes with key sizes of 48, 144, and 384 bits. For
the largest 4 benchmarks, we also tested with 960 bits.

Table II shows our results for each benchmark circuit and
SAT-hard instance size, as well as the SAT attack runtime
data for comparison. For instances with 144 or fewer key
bits, the SAT attack is often faster than the proposed attack.
However, at these sizes our attack’s longest runtime is 27 s
among all benchmarks, which is very small compared to the
length of the 48 hr timeout window. Furthermore, there is a
noticeable acceleration of the secondary SAT attack, which
uses the output of the sensitization tool, compared to the time
taken by the standard SAT attack.

At larger sizes, the sensitization attack becomes much more
efficient, as with 384 key bits, the sensitization attack unlocked
every benchmark with 384 key bits. For even the largest Full-
Lock size with 960 key bits, 3 of the 4 large benchmark
circuits were unlocked, each with a runtime of approximately
12 minutes (720 s). In contrast, 3 of the 6 benchmark circuits
could not be unlocked by the SAT attack within the test
window of 48 hours. The SAT attack did not unlock any
benchmarks with 960 key bits.

These experimental results show that our novel sensitization
attack is able to quickly unlock designs obfuscated with Full-
Lock even with sizable SAT-hard instances, which are not
efficiently unlockable with existing attack methodologies. Our
results remain consistent across several circuit topologies with
only one outlier benchmark.

IX. CONCLUSION

In this paper, we introduced a novel sensitization attack
to recover the intended functionality of a design obfuscated
with Full-Lock, which is resilient against attacks by existing
methodologies such as the SAT attack. Our novel attack uses
structure of the logical function of the obfuscation to infer
functionality by comparing sections of the circuit not altered
by the obfuscation to the inputs and outputs of a black-box
oracle.

The result is an increase in time efficiency compared to the
traditional SAT attack because the attacker avoids including
the SAT-hard instance in the formulation of its Boolean
satisfiability problems. The SAT problems the attacker solves
are also similar to those used in IC testing, enabling the use
of highly optimized algorithms available to design houses and
foundry-based attackers. Our experimental data demonstrates
the viability of the attack, which for our largest key size
reduced attack runtime for nearly every circuit from over 48
hours for the traditional SAT attack to less than 15 minutes
for our novel sensitization attack.

REFERENCES

[1] M. Rostami, F. Koushanfar, and R. Karri, “A primer on hardware
security: Models, methods, and metrics,” Proceedings of the IEEE, vol.
102, no. 8, pp. 1283-1295, 2014.

[2] S. Dupuis and M.-L. Flottes, “Logic locking: A survey of proposed
methods and evaluation metrics,” Journal of Electronic Testing, vol. 35,
no. 3, pp. 273-291, 2019.

[3] A. Chakraborty, N. G. Jayasankaran, Y. Liu, J. Rajendran, O. Sinanoglu,
A. Srivastava, Y. Xie, M. Yasin, and M. Zuzak, “Keynote: A disquisition
on logic locking,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 39, no. 10, pp. 1952-1972, 2019.

[4] P. Subramanyan, S. Ray, and S. Malik, “Evaluating the security of
logic encryption algorithms,” in 2015 IEEE International Symposium
on Hardware Oriented Security and Trust (HOST). IEEE, 2015, pp.
137-143.

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

M. El Massad, S. Garg, and M. V. Tripunitara, “Integrated circuit (ic)
decamouflaging: Reverse engineering camouflaged ics within minutes.”
in NDSS, 2015, pp. 1-14.

K. Z. Azar, H. M. Kamali, H. Homayoun, and A. Sasan, “Smt attack:
Next generation attack on obfuscated circuits with capabilities and per-
formance beyond the sat attacks,” IACR Transactions on Cryptographic
Hardware and Embedded Systems, pp. 97-122, 2019.

M. Zuzak, Y. Liu, and A. Srivastava, “Trace logic locking: Improv-
ing the parametric space of logic locking,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 40,
no. 8, pp. 1531-1544, 2020.

H. Zhou, A. Rezaei, and Y. Shen, “Resolving the trilemma in
logic encryption,” in 2019 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). IEEE, 2019, pp. 1-8.

Y. Xie and A. Srivastava, “Anti-sat: Mitigating sat attack on logic
locking,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 38, no. 2, pp. 199-207, 2018.

A. Sengupta, M. Nabeel, M. Yasin, and O. Sinanoglu, “Atpg-based
cost-effective, secure logic locking,” in 2018 IEEE 36th VLSI Test
Symposium (VTS). IEEE, 2018, pp. 1-6.

A. Sengupta, M. Nabeel, N. Limaye, M. Ashraf, and O. Sinanoglu,
“Truly stripping functionality for logic locking: A fault-based per-
spective,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 39, no. 12, pp. 4439-4452, 2020.

M. Yasin, A. Sengupta, M. T. Nabeel, M. Ashraf, J. Rajendran, and
O. Sinanoglu, “Provably-secure logic locking: From theory to practice,”
in Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, 2017, pp. 1601-1618.

B. Shakya, X. Xu, M. Tehranipoor, and D. Forte, “Cas-lock: A
security-corruptibility trade-off resilient logic locking scheme,” IACR
Transactions on Cryptographic Hardware and Embedded Systems, pp.
175-202, 2020.

M. Yasin, J. J. Rajendran, O. Sinanoglu, and R. Karri, “On improving
the security of logic locking,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 35, no. 9, pp. 1411-
1424, 2015.

Y. Liu, M. Zuzak, Y. Xie, A. Chakraborty, and A. Srivastava, “Strong
anti-sat: Secure and effective logic locking,” in 2020 21st International
Symposium on Quality Electronic Design (ISQED). IEEE, 2020, pp.
199-205.

M. Zuzak and A. Srivastava, “Obfusgem: Enhancing processor design
obfuscation through security-aware on-chip memory and data path
design,” in The International Symposium on Memory Systems, 2020,
pp. 260-271.

A. Saha, S. Saha, S. Chowdhury, D. Mukhopadhyay, and B. B. Bhat-
tacharya, “Lopher: Sat-hardened logic embedding on block ciphers,” in
2020 57th ACM/IEEE Design Automation Conference (DAC). IEEE,
2020, pp. 1-6.

K. Shamsi, M. Li, D. Z. Pan, and Y. Jin, “Cross-lock: Dense layout-
level interconnect locking using cross-bar architectures,” in Proceedings
of the 2018 on Great Lakes Symposium on VLSI, 2018, pp. 147-152.
H. M. Kamali, K. Z. Azar, H. Homayoun, and A. Sasan, “Full-lock:
Hard distributions of sat instances for obfuscating circuits using fully
configurable logic and routing blocks,” in Proceedings of the 56th
Annual Design Automation Conference 2019, 2019, pp. 1-6.

, “Interlock: An intercorrelated logic and routing locking,” in
2020 TEEE/ACM International Conference On Computer Aided Design
(ICCAD). IEEE, 2020, pp. 1-9.

M. Prasad, P. Chong, and K. Keutzer,
in Proceedings 1999 Design Automation Conference (Cat.
99CH36361). IEEE, 1999, pp. 22-28.

R. Drechsler, S. Eggergluss, G. Fey, A. Glowatz, F. Hapke, J. Schloeffel,
and D. Tille, “On acceleration of sat-based atpg for industrial designs,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 27, no. 7, pp. 1329-1333, 2008.

J. Cruz, F. Farahmandi, A. Ahmed, and P. Mishra, “Hardware trojan
detection using atpg and model checking,” in 2018 31st international
conference on VLSI design and 2018 17th international conference on
embedded systems (VLSID). IEEE, 2018, pp. 91-96.

R. Brayton and A. Mishchenko, “Abc: An academic industrial-strength
verification tool,” in International Conference on Computer Aided
Verification. Springer, 2010, pp. 24-40.

M. C. Hansen, H. Yalcin, and J. P. Hayes, “Unveiling the iscas-85
benchmarks: A case study in reverse engineering,” IEEE Design & Test
of Computers, vol. 16, no. 3, pp. 72-80, 1999.

S. Yang, “Logic synthesis and optimization benchmark user guide
version 3.0,” MCNC, Jan. 1991, 1991.

U. Berkeley, “Berkeley logic interchange format (blif),” Oct Tools
Distribution, vol. 2, pp. 197-247, 1992.

“Why is atpg easy?”
No.

