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Abstract—Multi- and many-core processors based on a network-
on-chip (NoC) interconnect are pervasive in computing platforms
ranging from server farms to embedded systems. Such complex
systems often make wide use of third-party intellectual property
elements from untrusted organizations. This manuscript proposes
a methodology that combines on-chip traffic monitoring, through
the insertion of lightweight counters in the NoC routers, and
on-chip analysis, through machine-learning techniques, into a
blue-team approach that detects the execution of unintended
applications with an average accuracy of 89% and limited
overheads in terms of area, power, performance, and timing.

Index Terms—multi-core processor, network-on-chip, intercon-
nect traffic, hardware performance monitors, machine learning,
artificial neural network, attack detection

I. INTRODUCTION

Modern computing platforms have evolved towards many-
core architectures mixing general-purpose CPU cores and
different hardware accelerators to overcome the slowdown
in the improvement of their performance and efficiency with
the end of Moore’s law and Dennard scaling and to maximize
the performance and energy efficiency of different workloads.
Network-on-chip (NoC) interconnects are crucial in these large
and complex platforms, connecting their cores with each other
and to memory, caches, and peripherals.

NoC-based computing platforms have been the focus of ex-
tensive research aimed at thwarting the critical threats posed by
the widespread adoption of third-party intellectual property (IP)
cores from untrusted external entities in their design. On the
one hand, the open literature contains a variety of works that
studied the design of malicious hardware [1] and in particular
of hardware Trojans (HTs) to attack NoC-based computing
platforms [2], also employing machine learning (ML)-based
techniques and generative adversarial networks to process the
data collected by HTs and retrieve the applications under
execution [3]. Conversely, a vast research effort has been
devoted to the detection of such malicious hardware [4], e.g., by
leveraging few-shot learning techniques [5]. On the other hand,
it has been shown that malicious applications on multi-core
system-on-chips (SoCs) and NoC-based platforms, including in
multi-tenant scenarios, can leak information, sabotage systems,
cause denial-of-service, and engage in snooping [6].
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The open literature is missing, to the best of our knowledge,
a methodology that exploits in a blue-team, i.e., defensive,
approach the NoC traffic information and that leverages ML-
based techniques to detect whether there is an attack ongoing
on the monitored computing platform.

Threat model: We consider an adversary that aims to
host, on one or more cores of a multi-core processor, an
application that can be of any form. We assume the adversary
can subvert the security provisions of the host processor and
the OS scheduler and launch an arbitrary unintended process
in the NoC. A successful countermeasure must detect the
unintended application run by the adversary and notify the user
to initiate a remediating action, e.g., killing the process. This
is consistent with the threat models from prior works on NoC
security [6]–[8]. In this paper, we focus on detecting anomalous
applications through traffic monitoring over the NoC, the only
trusted infrastructure in the system.

Contributions: This paper introduces a methodology that
leverages NoC traffic information in a blue-team approach to
detect the presence of unintended applications under execution
on a NoC-based multi-core processor, assuming its NoC
interconnect as the sole trusted element. It combines an on-chip
monitoring infrastructure, which collects data related to the
NoC traffic, with an on-chip analyzer based on ML techniques,
that is tasked with the detection of unintended applications by
employing solely such traffic data. The proposed methodology
provides three main contributions:

1) Effective detection – It leverages information related to
the number of packets traversing the various NoC routers
to obtain an up to 89% average accuracy in detecting the
execution of unintended applications.

2) Limited overhead – It requires solely the insertion of few
small counters for on-chip traffic monitoring and a simple
ANN-based analyzer, not affecting the performance and
timing of the NoC interconnect and with minimal area
and power overheads.

3) Flexible solution – It is effective also in scenarios with
multiple processes running concurrently, with an accuracy
drop of up to 10% on average, and we also evaluate how
reducing the number of monitor-embedded NoC routers
impacts the detection of unintended applications running
in the system.
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Fig. 1: Architecture of the proposed methodology, enhancing
NoC routers with traffic monitors and the ML-based analyzer.

II. METHODOLOGY

A. On-chip traffic monitoring

The NoC interconnect is enhanced with monitors, optionally
inserted in the routing block of each NoC router, that count
the number of data packets traversing the latter. Each monitor
is a n-bit counter that counts up each time a packet enters
the monitor-embedded router. A separate n-bit down counter
functioning as a timer maintains the observation window. Each
monitor captures the number of packets passing through the
router over the duration of a kernel which is typically in a 1-10
million cycles range [9]. This indicates that a 20-24 bit counter
in each monitor is sufficient to measure the packet count. Data
notably requires multiple clock cycles to traverse the switch
as it consists of multiple flits [10], hence the monitor size is
sufficient since the packet count will be less than the duration
of the counting process.

The monitor does not interfere with the data path of the
switch since it is not sequential to the routing logic and the
counting occurs in parallel to the routing, thus the traffic
monitoring mechanism does not impact the performance and the
timing of the NoC interconnect. The monitor-embedded NoC
routers packetize the counts utilizing the Network Interface
(NI) wrappers [10] and transmit it to the on-chip detector using
the NoC for analysis. The small area and power footprint of
the monitoring logic constitutes a minimal overhead, compared
to the area and power consumption of a multi-core NoC-based
SoC. The additional logic to add on-chip traffic monitoring
capabilities consists solely of few counters, while an NoC
router can occupy around 30 to 40 thousands of gates [10].

As an example, Fig. 1 depicts a multicore processor, with
16 cores in a 4×4 2D mesh topology, enhanced with on-chip
traffic monitoring capabilities by inserting monitors in 8 of the
16 NoC routers, selected according to a checkerboard pattern.

B. On-chip detection of unintended applications

Data from the monitors is processed by an on-chip ML-based
analyzer, connected to one node of the NoC interconnect, to
determine whether an unintended application is under execution.
As an example, in Fig. 1, the on-chip ML-based analyzer

is placed in the bottom right NoC router. The ML analyzer
deploys an artificial neural network (ANN) to analyze the
traffic characteristics data sent by the monitors. ANNs were
shown to be capable of mapping complex patterns effectively
and resilient to random noise and variations, outperforming
other ML algorithms such as KNN, SVM, and threshold-
based analysis in terms of accuracy in such traffic analysis
problems [3]. Moreover, supervised ML techniques such
as ANN achieve higher performance, in the presence of
labeled data, compared to the more computationally complex
unsupervised and reinforcement learning techniques [11]. In
the proposed approach, as the defender has knowledge of the
intended applications, we assume the presence of labeled data.

The dataset consists of a feature, corresponding to the packet
count, per each NoC router with monitoring capabilities, and
data from features corresponding to each intended application
are labeled with that application’s name. For example, our
experimental evaluation considers a 16-core system, thus the
dataset consists of 16 features, i.e., 16 packet counts for packets
traversing the corresponding NoC routers in the system. The
dataset is created in the same fashion as an actual system
designer, who may be able to create it by either employing an
emulator or a simulator of the real system during its design
phase. Various permutations of the intended applications are
executed on the simulator to create traffic traces to be used in
the training dataset, equivalent to those that would be visible
by the monitors in a real-world scenario, that consist of the
number of packets traversing the monitor-embedded switches.

As the traffic patterns, i.e., the packet count, depend on the
executing applications, the on-chip traffic, and the mapping of
the applications to the cores, the observed patterns will not be
constant for a given set of applications. Random noise with
a negative binomial distribution is appended to the dataset
to correctly construct a training dataset for the ANN that is
representative of the variations owing to network congestion,
avoiding over-fitting of the ML analyzer and augmenting the
simulation data for each application to emulate a real system in
the field. The binomial noise is generated such that it does not
affect the distribution of the dataset dramatically, serving the
purpose of a large dataset for the ANN as well as emulating
noise in the observations generated by the concurrent presence
of other processes in the system.

The three-layer ANN implemented by the analyzer is
composed of 1) an input layer with a neuron for each
monitor-embedded router and with a rectified linear unit
(ReLU) activation function, 2) a hidden layer comprising
50 neurons and a ReLU activation, and 3) an output layer
with a softmax activation function. Applying dropout to the
hidden layer, with a 0.5 dropout rate, minimizes overfitting.
Such ANN architecture is mainly suitable for multi-class
classification, with the number of neurons aligning with the
unique classes, and it is compiled using the Adam optimizer and
the sparse categorical cross-entropy loss function. In the training
phase, the dataset undergoes a preprocessing that includes data
standardization and label encoding.



TABLE I: Detection performance in the baseline scenario.

Unintended app Accuracy Precision Recall F1 score

blackscholes 97.3% 98.0% 97.3% 97.3%
bodytrack 92.1% 90.5% 92.1% 90.9%
canneal 86.8% 88.2% 86.8% 85.5%
dedup 89.5% 88.3% 89.5% 88.2%
ferret 86.8% 86.5% 86.8% 85.3%
fluidanimate 86.8% 86.6% 86.8% 85.4%
freqmine 81.6% 85.3% 81.6% 78.8%
raytrace 94.7% 93.4% 94.7% 93.7%
streamcluster 89.5% 88.8% 89.5% 88.4%
swaptions 94.7% 93.0% 94.7% 93.5%
vips 86.8% 88.8% 86.8% 85.1%
x264 81.6% 85.1% 81.6% 81.5%

Average 89.0% 89.4% 89.0% 87.8%

III. EXPERIMENTAL EVALUATION

A. Experimental setup

Target system configuration: The target architecture, simu-
lated in the gem5 cycle-level simulator [12], version v22.1.0.0,
is a 16-core CPU with cores based on the x86 ISA and
implementing gem5’s out-of-order detailed CPU model. The
CPU cores are connected through single-cycle-latency routers
of a 16-node NoC interconnect configured in a 2D 4×4 mesh
topology with X-Y routing and implementing gem5’s Garnet
network model. The Ruby cache memory and coherence model
is configured in a two-level cache hierarchy with MESI cache
coherence protocol. L1 caches, split into instruction and data
caches, are private to each core, while L2 caches are shared
among them. The simulated system includes a 3GB, 2400
MT/s, dual-channel DDR4 memory.

Simulator and workload: gem5 executes full-system simu-
lations that boot the Ubuntu 18.04 OS with a Linux 4.19.83
kernel. The workload is constituted by 12 applications from the
PARSEC benchmark suite [9]. One or more PARSEC processes
are executed at a time, each possibly parallelized on multiple
threads and assigned to a subset of the CPU cores, with each
core executing up to one thread, by leveraging the taskset
command from the util-linux package. The gem5 simulations
output the number of packets traversing each of the 16 NoC
routers during the execution of the PARSEC applications.

ANN analyzer: The classifier for ML-based analysis is
implemented by leveraging the Keras deep-learning framework.
The training spans 50 epochs, with a batch size of 32, and the
model’s performance is evaluated through a set of performance
metrics to showcase its suitability for classification tasks. The
ANN has 12 output classes, one for each intended considered
PARSEC application plus one class for the unintended appli-
cations. Based on the number n of applications expected or
allowed to run concurrently in the system due to multi-tenancy,
an n-hot encoding is adopted on the output layer to indicate
which and applications are being hosted in the system. In
the various considered scenarios, the traffic data including the
execution of the applications designated as unintended is not
used as part of of the training set for the ANN analyzer, while
it is used instead in the testing phase.
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Fig. 2: Impact of variation in the number of monitor-embedded
routers on the detection accuracy.

B. Experimental results

Baseline scenario: We consider first the scenario in which
a single application is hosted on the multi-core system at a
time, with up to 16 threads running concurrently, each on
a separate core of the multi-core CPU, and packet data is
available for all of the 16 switches in the NoC. In particular,
we evaluate 12 separate cases, one for each of the considered
PARSEC applications. Each case consists of one application
being classified as an unintended one: training is therefore
performed on a dataset that includes the execution of all the
other 11 application, while inference is then carried out on
all 12 applications, including the unintended one, to test the
performance of the ML analyzer.

Table I lists the performance metrics for the ML model in
such scenario, with each case of a specific PARSEC application
being the unintended one corresponding to a row in the
table. The leftmost column reports indeed the unintended
application in each of the 12 considered cases. The results
of the experimental evaluation reported in Table I highlight
average accuracy, precision and recall of 89% and an average
F1 score of 88%, with all the 12 considered cases providing
accuracy, precision, recall, and F1 score higher than 81%, 85%,
81%, and 78%, respectively.

Number of monitored routers: We explore scenarios where
the number of monitor-embedded NoC routers is equal to 8
and 4, instead of all 16, whereas the number of apps running
concurrently and marked as unintended ones are left unchanged.

The clustered bar chart in Figure 2 depicts how the top-
1 accuracy, chosen for the sake of simplicity as a metric
representative of detection performance, varies in the 12 cases,
one per each application, by decreasing the number of monitor-
embedded routers from 16 to 8 and 4. In particular, the results
show that the accuracy declines as the number of monitor-
embedded routers decreases for each of the 12 cases. The
average accuracy reduces from 89% with 16 monitor-embedded
routers to 64% and 35% with 8 and 4, respectively. We note
that both the precision, recall, and F1 score metrics follow the
exact same trend as the top-1 accuracy, thus we do not depict
them and we do not discuss them separately.
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Fig. 3: Impact of variation in the number of applications running
concurrently on the detection accuracy.

Number of apps under execution: We consider a scenario
where we monitor all 16 NoC routers, two applications are
under execution at a time, and their threads are running on
distinct sets of CPU cores. We still consider 11 separate cases,
each with a single unintended application from the PARSEC
benchmark suite. The training dataset does not contain therefore
data corresponding to the execution of pairs of applications
that include instances of the unintended one.

Figure 3 compares the accuracy in this scenario with two
applications executing concurrently, in which one application
varies while the other is blackscholes, against the one obtained
for the baseline scenario with a single application, whose
performance metrics were previously listed in Table I. Each
cluster of bars in Figure 3 corresponds to a use case where
the unintended application is the one on the X-axis, both for
the baseline scenario and the scenario with two applications
running concurrently.

The results show a detection accuracy of more than 78% on
average with 2 apps running concurrently, demonstrating that
the proposed methodology is still effective even with multiple
applications under execution on the system. Detection accuracy
drops by between 3% and 21%, corresponding to cases in
which freqmine and canneal are the unintended applications,
respectively, compared to the baseline scenario with only one
application running at a time. The precision, recall, and F1
score metrics follow the exact same trend as the top-1 accuracy,
thus we do not depict and discuss them for the sake of brevity.

Overhead analysis: Each monitor occupies 2,325µm2 and
consumes 0.189µW of additional power, thus their power
overhead contribution grows linearly with the number of
monitor-embedded routers, reaching a maximum value of
around 3µW when all 16 routers include a monitor. The on-chip
ANN analyzer occupies instead an area of 34,448.79µm2, with
a power consumption of 6,299.3µW and a delay of 0.41ns. We
note that the power consumption of the overall SoC is typically
in the order of Watts, hence the power overhead due to on-chip
monitoring and analysis is negligible.

We further remark that, since the monitors and the analyzer
are not on the main datapaths of the routers the proposed
methodology does not affect in any way the performance and

the timing of the overall system. The packetized packet count
transmitted from the monitors to the analyzer add negligible
traffic to the application traffic as they are sent once at the end
of a kernel execution.

IV. CONCLUSIONS

This paper described a methodology that detects unintended
applications running on NoC-based computing platforms by
leveraging on-chip monitoring of the NoC traffic and an
ANN-based analysis. An extensive experimental campaign
highlighted a detection accuracy of up to 89% on average,
studied how embedding traffic monitors in different numbers
of NoC routers impacts accuracy, and demonstrated the effec-
tiveness of the methodology even with multiple applications
running concurrently, with an average accuracy reduction of
10% compared to the single-application scenario,
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