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Abstract—Hardware side-channels have been exploited to leak sensitive
information. With the emergence of deep learning, their hardware
platforms have also been scrutinized for side-channel information leakage.
It has been shown that the structure, weights, and input samples of
deep neural networks (DNN) can all be the victim of reverse engineering
attacks that rely on side-channel information leakage. In this paper, we
survey existing work on hardware side-channel-based reverse engineering
attacks on DNNs as well as the countermeasures.

Index Terms—Reverse Engineering, Side-Channel Attacks, Deep Neu-
ral Networks

I. INTRODUCTION

With the rapid evolution of machine learning, deep neural networks
(DNN) are increasingly becoming an essential part of many appli-
cation programs used in our daily lives. Meanwhile, training highly
accurate DNN models requires expensive hardware, takes a long time,
and sometimes needs private data. For instance, training the ResNet
model with the ImageNet dataset takes a few weeks even with state-
of-the-art GPUs [1]. The high performance of DNNs and their high
training cost make them a type of valuable intellectual property of
DNN model owners.

Unfortunately, it has been shown that information about DNN
models, including the structure, weights, and input samples can be
leaked through hardware side-channels. In fact, such leakage has
been found in both general purpose hardware (CPUs and GPUs) and
specialized DNN accelerators. In this paper, we survey the existing
work on side-channel-based reverse engineering attacks on DNNs.
The exploited hardware side-channels can be broadly categorized
into three classes: resource sharing due to the architecture, off-
chip memory traffic, and physical measurement. A more detailed
classification tree is shown in Figure 1 where it can be also seen
that countermeasure is still missing for some types of attacks. We
summarize the work on each of these topics in the rest of this paper.
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Fig. 1. Summary of Attacks and Countermeasures Discussed in this Paper

II. SIDE-CHANNELS ENABLED BY RESOURCE SHARING

In modern processor architectures, many components are designed
to be shared by different processes. This potentially allows one
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process to infer the information about another by monitoring the
usage of shared resources. As far as DNN reverse engineering is
concerned, the sharing of cache in CPUs and CUDA cores in NVIDIA
GPUs has been exploited. We introduce this body of work in this
section. Notice that this type of sharing only leaks the structure, not
weights, of DNNs. This is because weights usually do not affect the
execution of the DNN model and hence will not be reflected in the
architectural side-channels.

A. Cache Side-Channel based DNN Reverse Engineering

Due to the set associative nature of cache in most CPUs, multiple
memory addresses are mapped to the same cache block, which makes
it possible for a process to infer processes’ cache usage by observing
its own memory access latency (cache hit or miss). For example, if
a memory read incurs a cache hit, it means that the cache block has
not been accessed by any other process.

Two methods of DNN reverse engineering through monitoring
the use of DNN library codes, namely Cache Telepathy [2] and
DeepRecon [3], have been independently proposed by Yan et al. and
Hong et al. In these attacks, the DNN library codes need to be
avilable to the adversary. This enables the adversary to identify the
DNN library function code lines to monitor with cache timing. With
the series of DNN library function calls discovered through cache
timing side-channel, the adversary can extract the control flow of the
DNN. In Cache Telepathy, the adversary first acquires the addresses
of a few key functions in the Generalized Matrix Multiply (GEMM)
backend libraries. Then they use Flush+Reload [4] or Prime+Probe
[5] to monitor the usage traces of these functions. Substantial DNN
layer structure information can be extracted from these traces and
usually only a few candidate structures will be identified among
a virtually infinite search space. DeepRecon uses Flush+Reload to
monitor the usage of TensorFlow library code. A sequence of layers
can be obtained this way. Then, the sequence is compared with DNN
structures that are available in the public domain and the victim DNN
can be identified if it is among those ones.

Both Cache Telepathy and DeepRecon require that the library
function used by the victim DNN be shared for all the processes
running on the same processor. Hence, these attacks will not be
possible if the libraries are not shared. Liu et al. proposed GANRED
[6] where the adversary only examines the overall cache timing side-
channel signature left by the victim DNN (VDNN). Meanwhile, the
adversary also builds their own DNN (ADNN) with the goal of
producing the same cache side-channel signature as the VDNN. A
Generative Adversarial Net (GAN) style framework is set up with the
ground truth being the VDNN’s cache trace, the constructor being
the ADNN, and the discriminator being the root-mean-square error
between the ADNN’s cache trace and the ground truth. The authors
showed that the GANRED framework was able to reconstruct the
precise structure of AlexNet [7] and VGG-11, 16, and 19 DNNs [8].

B. Mitigating Cache Side-Channel-based DNN Reverse Engineering

While cache side-channel analysis is not unique to DNN reverse-
engineering, such attacks have become an important application. As
a result, pathways to mitigate these attacks against DNNs have been
developed. For example, Telepathic Headache [9] was proposed to



thwart the Cache Telepathy attack introduced in [2]. In order to do so,
Chabanne et al. modify the Generalized Matrix Multiply (GEMM)
algorithm that is exploited by the Cache Telepathy attack to add
randomness to the order with which the computation is executed.
Doing so exponentially increases the search space that must be
considered by the resulting algorithm, protecting the DNN hyper-
parameters against a Cache-Telepathy-style attacker. However, such
a defense mechanism is unique to side-channel attacks exploiting
the GEMM algorithm. As such, other side-channel attacks, such as
GANRED [6], cannot be mitigated through such an approach.

In addition to mitigation schemes that are unique to prevent cache
side-channel attacks against DNNS, there is also a large body of work
exploring the mitigation of cache side-channels in cryptographic,
data center, and more generalized applications [10], [11]. Many of
these mitigation schemes close the cache side-channel in a way that
prevents DNN reverse engineering as well, making them directly
applicable against DNN-focused attacks. As such, we will briefly
summarize several families of mitigation strategies for cache side-
channel attacks that can be extended to protect DNNs as well. We
refer to these families as detection, resource isolation, and restricting
fine-grain timing. We summarize each below.

Detection: These techniques aim to identify if/when a cache side-
channel attack is being launched. Upon detection, action can be taken
to prevent further leakage, such as locking the system, flushing the
caches, or evicting processes. There is a huge number of techniques
in this family, however, they all generally follow the same model.
Namely, they aggregate some collection of processor state informa-
tion such as the currently loaded libraries, the cache hit/miss ratio, the
branch misprediction count, or the presence of co-located processes.
Based on this state information, an algorithm is deployed to identify
when a side-channel is being analyzed. For example, Kulah et al.
[12] proposed SpyDetector, an anomaly-based detection approach that
quantifies contention in shared resources per process using hardware
performance counters. When sufficient contention occurs to exceed
a k-means-clustering-determined threshold, an attack is detected and
a warning is issued. In a slightly different approach, Briongos et
al. [13] proposed the CacheShield tool to detect cache side-channel
attacks. CacheShield protects a victim process by tracking hardware
performance counters, particularly cache misses and CPU cycles. A
detection rule is defined to calculate a value based on these parameters
(along with the prior detection rule values). Whenever this calculated
detection rule value exceeds a defined threshold a side-channel attack
is detected, an alarm is raised, and some countermeasure is taken.
This family of detection-style mitigation strategies includes a wide
array of additional works as well, such as [14]-[16]

Resource Isolation: These techniques aim to partition or isolate
shared cache resources between processes. There are several ap-
proaches in this family including cache partitioning [17]-[19] and
sharing prevention [20]. Page [17] proposes a novel partitioned cache
architecture that can be dynamically reconfigured. In this model,
the cache is dynamically split to provide a protected cache region
uniquely defined per application, thereby reducing cache interference.
Another partitioning-style approach involves locking specific cache
lines to their respective processes [18], [19]. These cache lines cannot
be evicted by cache accesses from different processes, closing the
side-channel. The sharing prevention approach in [20] closes the
cache side-channel through restricting any sharing of last-level cache
lines between processes in separate security domains.

Restricting Fine-Grain Timing: These techniques attempt to
restrict any fine-grain timing measurements available to the attacker
[21]-[23]. This can be done either through limiting the frequency of
allowed time-stamp requests [21] or coarsening the resulting timing
measurements [22], [23]. Essentially, these techniques attempt to
deny the attacker timing data with sufficient granularity to provide
side-channel leakage.

C. GPU Context Switching Side-Channel

Another side-channel attack, called MoSConS, has been proposed
and relies on the adversary sharing a GPU with the victim [24].
Having the victim’s kernel and attacker’s kernel use the same GPU
core causes context switching. Additionally, using multiple adversary
kernels and a scheduler guarantees that the adversary will get an
equal amount of the execution time. This allows the adversary to
more consistently sample the victim’s data, such as resource usage.
Then, using customized inference models, based on the long short-
term memory (LSTM) model, multiple passes are run to identify
the structure of the victim’s DNN. Different customized models are
able to iteratively and individually identify layer composition and
hyper-parameters. Multiple iteration training creates better structure
predictions as any errors have the opportunity to be corrected. The
DNN model syntax is also used to correct errors yielding more
accurate predictions. MoSConS was evaluated on the Nvidia GeForce
GTX 1080 TI GPU and was able to discover model secrets with a
high accuracy. The attack was tested on various models belonging to
different families all resulting in highly accurate results.

III. MEMORY ACCESS PATTERN SIDE-CHANNEL

Many DNN architectures use weights and intermediate feature
maps that cannot fit entirely within a chip’s caches, so some kind
of off-chip DRAM is used. This is most problematic with DNN
accelerators because such devices often use direct memory access.
While the DNN accelerator itself may be hardened against tampering
and probing attacks, off-chip DRAM may be susceptible. Data sent
to and read from DRAM can be encrypted, but physical memory
addresses and access types (read/write) can be observed through
physical probing.

A. DNN Reverse Engineering through Memory Access Patterns

In [25] the authors observed that the off-chip memory access
pattern of an inference accelerator is governed by the read and
write memory dependencies during inference, and can be used to
infer a set of DNN network architectures. Memory addresses which
are only read and never written to can be marked as weights, and
addresses which are written to can be marked as feature maps. To
distinguish between an input and ouput feature map, note that an
input feature map for one layer is the output feature map of the
previous layer. Therefore a read on a previously written to address
represents the input feature map of the current layer. Since feature
maps and weights are stored in contiguous arrays, the sizes of
filters and feature maps can be extracted. The stride and width
of convolutional and pooling layers cannot be exactly determined,
but the execution time is directly proportional to the number of
MAC operations performed. Any candidate network structures with a
different number of MAC operations can be eliminated from the set
of possible network structures. Each candidate network can then be
trained for a few epochs to quickly prune away networks with low
accuracy.

The authors of [25] also found that dynamic zero pruning can also
leak information about weight values. The commonly used ReLU
activation function tends to result in feature maps with high sparsity,
i.e a large number of zeroes. By pruning these zero values, only
non-zero values need to be saved to memory (if using a run-length
encoding), reducing overhead. However, this also leaks the number
of zeroes present in feature maps to an attacker. An attacker can use
this information to express weights as a function of the bias value by
iteratively constructing network inputs that only activate certain parts
of the network and observing the number of nonzero outputs. While
the exact weight and bias values are unknown, this greatly reduces
the search space.



B. Memory Access Patter Obfuscation for DNNs

There are countermeasures available to prevent the structure and
weights of the DNN from being leaked by the processor’s memory
access pattern. The authors of [26] note that the oblivious RAM
(ORAM) technique is already in use to hide memory access in
more general situations, but recommend more efficient obfuscation
techniques which are effective at concealing the DNN structure while
making far fewer memory accesses. There are three techniques which,
together, provide desirable memory access pattern obfuscation. One
technique is the oblivious shuffle, where the data related to each DNN
layer is reordered in memory before being accessed for computation.
The attacker viewing the memory access pattern can see which
addresses the process has accessed during the shuffle but cannot
determine which order they were accessed in for computation. In
addition, if not all addresses in the shuffled address region are used in
computation, then the attacker also cannot tell which addresses are not
actually used in computation. The two other techniques are namely
dummy memory accesses and address space layout randomization,
which are shown to increase the number of possible DNN structures
exponentially and hence rendering the reverse engineering attack
infeasible.

The secure DNN architecture NPUFort makes the assumption of
an even stronger attacker, who is able to view the contents of the
memory accesses for both data and instruction reads and writes
[27]. To counter this, two additional hardware units are proposed,
termed the instruction security unit and the data security unit. These
units use an AES-CTR algorithm to encrypt buses to the CPU and
memory respectively. However, encryption of all data on the bus
adds significant overhead, so only certain critical feature maps are
encrypted, chosen based on the sum of the weights, the percent of
zero weights, and energy consumption. With these units, NPUFort
can prevent the attacker from learning DNN weights or structures
even if they have access to the instruction file.

IV. REVERSE ENGINEERING USING PHYSICAL SIDE-CHANNELS

In addition to cache side-channel, power, electromagnetic (EM),
and timing side-channels have also been exploited to reverse engineer
neural models as well. In this section, we introduce such attack and
their defense techniques.

A. Power Side-Channel-based Attacks

In [28], power consumption data was used to recover the input
to a convolutional neural network (CNN) without any knowledge of
the model parameters or output. However, the attacker is assumed to
have knowledge about the structure of the neural network and the
size of the input. Usually power consumption measurements from
side channels are not very accurate as they contain a substantial
amount of noise from the surrounding circuit and the measurement
tools themselves. However, this particular attack offers a method to
remove noise by first applying a low-pass filter, then finding the
DC power component, and finally performing power alignment and
curve fitting. The more precise power consumption measurements
lead to better reverse engineering. The authors of [28] provide
separate data processing algorithms for adversaries that solely have
the power side channel measurements and the adversaries that have
additional information on the relationship between power and image
pixels. Testing for this attack was conducted by synthesizing a CNN
accelerator design on an FPGA. Using hand-written digits from the
MNIST dataset as input, the attack was able to recognize the image
with high accuracy.

Dubey et al. have successfully demonstrated that power side
channel leakage can be used to determine secret weights via a
correlation in the Binarized Neural Network (BNN) and have formu-
lated countermeasures [29]. The attack primarily targets the hardware
implementation of neural networks and assumes that the adversary
has a grey-box access of the device. Adversaries are able to target

registers, because registers used in pipelined adders have a higher
power consumption than the combinational logic and there exists a
direct correlation of register values with secret model weights. This
attack model can be launched on any stage of an adder tree.

B. Electromagnetic Side-Channel-based Attacks

As mentioned previously, electromagnetic side-channels can also
be exploited to reverse engineer neural networks. Specifically, an
attack can be orchestrated by passively observing an electromagnetic
side-channel. A passive observation of an electromagnetic side-
channel requires physical access to the system, which is a restraint
on the attacker, but no other major limitations for the attacker exist.
In fact, this electromagnetic side-channel observation exploit does
not even require access to training data, which gives even more
flexibility and freedom to the attacker. Given these constraints and
freedoms mentioned, an attacker can clearly distinguish the activation
function from the electromagnetic trace and easily measure the timing
execution. This would mean that it is more than possible to use
these newfound values to reverse engineer the relevant parameters
and hyperparameters of the neural networks. An example of this
type of side-channel exploitation can be found in [30] where a
framework was developed that considers each part of the neural
network separately and then, by combining the information, manages
to reverse engineer all relevant hyperparameters and parameters.

Similar to the electromagnetic side-channels, timing side-channels
can also be used to gain classified knowledge, because the total
execution time of neural networks depend on the sequential com-
putation along the number of layers or depth. To set up for a timing
side-channel attack, a few prerequisites must be met, and unlike
the electromagnetic side-channel attack, training data is required. To
retrieve said training data, the attacker must measure the execution
time of multiple models with different hyperparameters, and then
reconstruct the data from there. Once the data is reconstructed, the
attacker is free to send queries to the target model and compute the
overall execution time averaged across all the queries. This allows the
attacker to reduce the entropy of the black box model of the neural
networks, and slowly get closer to reverse engineering the original
neural networks. A good example of this phenomenon is shown
in [31] where a Recurrent Neural Network (RNN) based controller
predicts the hyperparameters of each layer in the original Neural
Network, and then a substitute neural network model is used where
it learns to mimic the predictions of the original model.

C. Mitigating Physical Side-Channel Leakage of DNNs

As a countermeasure to the power and EM side channel attacks, a
hybrid of Boolean masking and hiding technique has been proposed
[29]. The Boolean masking works by secret sharing — removing
the dependence of secret key on all immediate computations. the
inputs are split into two randomized shares which are independently
processed and are never reconstructed to ensure the side-channel
leakages do not share any information about the model primitives.
Each part of the inference engine, namely adder tree, activation
function, Boolean to arithmetic share conversion and output layer are
masked to reduce the information leak to the sign bits. In order to
decrease power and area overheads in masking the sign bits, hiding
techniques have been implemented for only the sign bit. Near to
constant power consumption was achieved using Wave Differential
Dynamic Logic (WDDL) technique.

Since hiding techniques are less efficient than boolean masking
to mitigate the leaks, Dubey et al have gone on to extend their
research to implement a fully masked BNN [32]. The AND gates of
adder are replaced with Trichina’s AND gates to linearize the AND
operation with relatively simple and efficient implementation and to
automatically masks the sign bits without needing extra masking
or hiding efforts. A look up table based approach is implemented
to design masked multiplexers and the masked comparison based



output layer has been transformed to masked subtraction to exploit the
existing masked adders bypassing the requirements of extra hardware
overhead. Operations are scheduled at expense of additional flop-flops
to remove glitches.

In both the aforementioned works, leakage assessment has been
done using non-specific fixed vs randomized t-test [33] and have
ensured the security up to 2M traces as opposed to 45K traces in the
earlier work. Both the works have initialized the momentum in works
related to defenses against power side channel based attacks to neural
networks, but the scopes have been limited to BNNs. Athanasiou et al
have proposed implementation of arbitrarily masked neural networks
[34]. A library of secured masked operators capable of composing full
Multi Layer Perception and Convolutional Neural Network inference
models has been created and have demonstrated security under the
notion of 1-strong-non-interference.

V. CONCLUSION

DNNs present an important attack surface for side-channel-based
attackers due to their unique properties that make them particularly
relevant targets. These properties include their 1) extremely regular
memory access patterns, 2) common execution in the cloud, 3) high-
value architecture, and 4) high-value data. As a result, there has been
a variety of work exploring side-channel attacks on DNNs. In this
work, we surveyed this research, highlighting prominent works both
exploiting as well as mitigating 1) architectural resource sharing,
2) memory access pattern, and 3) physical side-channels. Based on
the scale and scope of existing research as well as the increasing
popularity of DNNs, side-channel-based attacks on DNNs promise
to remain an important direction driving current and future research.
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