A Resource Binding Approach to Logic Obfuscation

Michael Zuzak, Yuntao Liu, and Ankur Srivastava
Department of Electrical and Computer Engineering, University of Maryland, College Park, MD USA
{mzuzak, ytliu, ankurs} @umd.edu

Abstract—Logic locking has been proposed to counter security threats
during IC fabrication. Such an approach restricts unauthorized use
by injecting sufficient module level error to derail application level IC
functionality. However, recent research has identified a trade-off between
the error rate of logic locking and its resilience to a Boolean satisfiablity
(SAT) attack. As a result, logic locking often cannot inject sufficient
error to impact an IC while maintaining SAT resilience. In this work,
we propose using architectural context available during resource binding
to co-design architectures and locking configurations capable of high
corruption and SAT resilience simultaneously. To do so, we propose 2
security-focused binding/locking algorithms and apply them to bind/lock
11 MediaBench benchmarks. The resulting circuits showed a 26x and 99x
increase in the application errors of a fixed locking configuration while
maintaining SAT resilience and incurring minimal overhead compared to
other binding schemes. Locking applied post-binding could not achieve
a high application error rate and SAT resilience simultaneously.

I. INTRODUCTION

Due to the rising cost and complexity of high-end integrated
circuit (IC) fabrication, IC design companies are increasingly reliant
on untrusted manufacturing facilities. In order to fabricate an IC,
these untrusted facilities are given GDSII files for the design. These
files can be deciphered to uncover intricate design details leading to
concerns such as reverse engineering, piracy, and overproduction [1].

Logic locking (also known as logic obfuscation) secures design
details from an untrusted foundry by incorporating a locking key into
a design that hides the functional and structural details of the circuit
[2]-[9]. This locking key is then withheld from untrusted facilities.
For any wrong key, locking structures produce errant output for a
deterministic set of input minterms, called locked inputs. Whenever
these locked inputs are applied to a locked circuit, error is injected
into the design. Most logic locking work targets combinational
circuits in a design with the goal of injecting sufficient error in these
locked modules to critically impact an IC at the application level,
rendering it unusable. See [1] for a survey of logic locking research.

For combinational locking, one of the most formidable attacks
on locked circuits is the SAT attack [10], [11]. Recent research has
suggested that logic locking often cannot induce a sufficient number
of errors to critically impact a locked IC while maintaining resilience
to a SAT attack [12], [13]. This is due to a fundamental trade-off
between the number of locked inputs and SAT attack resilience that
exists underlying all combinational logic locking schemes [2], [14].
This trade-off requires that locking corrupt only a small number of
locked inputs to be SAT resilient. A small number of locked inputs
causes only a small number of errors, which are often inadequate to
overcome the error resilience of ICs [15]. This creates a dilemma.
High SAT resilience requires low combinational module corruption,
however, we also need high application corruption for wrong keys.
To overcome it, an architectural view of locking is needed.

This leads to our primary goal: to use architectural knowledge
available during the resource binding phase of high-level synthesis
(HLS) to lock an overall IC against an untrusted foundry. As we
show, by using security-aware binding algorithms, we can achieve
both objectives of high application corruption and SAT resilience.

A. Related Work

Relatively few prior works have explored HLS in the context of
logic locking [16]-[18]. The TAO technique [16] suggested transfor-
mations to obfuscate a design during HLS. However, TAO assumes

This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record will be published
in the Design Automation Conference 2021.

This work was supported by the National Science Foundation Grant
1953285 and the ARCS Foundation.

a restrictive attacker model where the adversary cannot have access
to a working chip. This limits the use of TAO to a small subset of
logic locking use cases, where the IC is never distributed beyond the
design house (e.g. government fabrication of military ICs). Doing so
restricts the use of the SAT attack [10], [11], which quickly unlocks
the high-error locking used by TAO [10], limiting its utility.

SFLL-HLS proposes an extra HLS step to identify IC modules
with a sufficient number of inputs to support locking [17]. Then,
based on simulations of the RTL design, they tune the size of their
locking configuration to ensure security. While this approach occurs
during HLS, it does not directly integrate with HLS algorithms to
inform either the design’s RTL, or the configuration of logic locking
to improve security. Rather, it serves as an argument that supports
architectural consideration for logic locking.

DECOY presents a tighter integration with HLS, however, it still
does not integrate into any phase/algorithm of HLS [18]. Instead,
DECQY adds an HLS step to partition the design into critical and
non-critical IP. Critical IP is then implemented in a separate eFPGA,
with non-critical IP implemented in an ASIC. As a result, the eFPGA,
which exhibits strong reverse-engineering protection, obfuscates the
critical IP. While this yields security, it also introduces substantial
design complexity and overhead. Such an approach is often untenable.

While both SFLL-HLS and DECOY recognize the importance
of HLS’s context, they fail to capitalize on the RT-level design
decisions made during this phase. Instead, they rely on standard
HLS algorithms that optimize for parameters such as switching
activity [19], or register re-use [20]. This is a missed opportunity
as these algorithms can make RT-level design decisions to optimize
and inform supply-chain security instead, as shown in this work.

B. Contributions
We propose security-aware resource binding. To do so, we propose

2 problem formulations, one where locked inputs are chosen prior to

binding (obfuscation-informed binding) and one where the binding

algorithm can inform locked input selection (binding-obfuscation co-
design). Our contributions for each problem formulation are:

Obfuscation-Informed Binding:

1) A cost function to inform resource binding that maximizes the
application errors caused by locking with specified locked inputs.

2) A graph theoretic binding algorithm that optimally maps opera-
tions to locked modules to maximize application error in P-time.

Binding-Obfuscation Co-Design:

1) A graph theoretic algorithm, occurring during HLS, to concur-
rently bind and choose locked inputs to maximize locking-induced
application errors. We first develop an optimal algorithm with a
non-polynomial runtime and then present a P-time heuristic.

2) A design methodology that combines exponential SAT-runtime
locking schemes with our co-design algorithm to configure lock-
ing to meet arbitrary application error/SAT resilience goals.

To evaluate each algorithm, we applied them to 11 MediaBench
benchmarks [21]. Obfuscation-informed binding (binding-obfuscation
co-design) caused a 26x (99x) increase in the application errors
caused by locking while maintaining SAT resilience and incurring
an increase of only 4.7 in register count and 0.03 in switching rate
compared to area and power aware binding. Conventional locking
approaches that are applied to gate-level designs could not achieve
both a high application error rate and SAT resilience simultaneously.

II. PRELIMINARIES

A. Logic Locking
Logic locking schemes are often evaluated by 2 characteristics: 1)

error severity and 2) attack resilience. Error severity is the ability of

logic locking to cause critical failures for wrong keys, often quantified
by the number of locked inputs (i.e. error producing inputs for a
wrong key). Attack resilience is the ability of logic locking to resist
attacks. For a prevalent attack against logic locking, known as the
SAT attack [10], [11], an inverse relationship between these goals has
been identified [2], [14]. The work in [2] defines this relationship as:

A= [log(2 oM — o))/log(—zw il _C)>—‘ (1
e(21kl —c) (2%l —c—1) olkl —e—1

where) is the expected SAT attack iterations, |k| is the key length
in bits, c is the # of correct keys, and ¢ is the ratio of locked inputs
to total inputs. If we assume that the locking scheme, the length
of the locking key, and the number of primary inputs are fixed,
Eqn. 1 shows a direct, inverse relationship between the number of
locked inputs and the expected SAT iterations to unlock a circuit.
Note that this result is unique per module in the design because
the SAT attack model assumes access to an IC’s scan chain (i.e. its
intermediate registers). Thus, SAT resilience is calculated separately
for each locked module in the design. Based on this trade-off, recent
research has suggested that logic locking often cannot lock enough
inputs to induce a sufficient number of errors to critically impact
an IC, while maintaining SAT resilience [12], [13]. Thus, locking is
stuck in a dilemma between high corruption and high SAT resilience.

In this work, we focus on 2 prominent families of logic locking,
denoted 1) critical minterm locking and 2) exponential SAT iteration
runtime locking. Critical minterm locking schemes include techniques
such as Stripped Functionality Logic Locking (SFLL) [3]-[5] and
Strong Anti-SAT [6]. These techniques allow an IC designer to
select specific critical input minterms in a locked module and force
them to produce errant output for a large subset of wrong keys.
Such techniques usually guarantee that the expected number of
SAT iterations scales exponentially in key length. Exponential SAT
iteration runtime locking schemes include techniques such as Full-
Lock [7], LoPher [8], and Cross-Lock [9]. These techniques cause the
runtime of successive SAT attack iterations to increase exponentially.

B. High-Level Synthesis (HLS)

HLS is an automated design process that converts a behavioral
description of a digital system into an RT-level design. HLS consists
of 3 steps: allocation, scheduling, and binding. Allocation determines
the type and number of resources necessary to implement a design.
After this step, a list of functional units (FUs) (e.g. adders, memories,
etc.) to implement a design is created. Scheduling partitions a design
into control steps, called operations, which can be completed in one
clock cycle. After this step, a schedule, usually represented as a
scheduled data flow graph (DFG), is created. In the DFG, nodes
are operations that must be completed and edges are dependencies
between operations. Binding maps (or binds) each operation to an FU
allocated during the allocation phase. Common binding approaches
target 1) minimizing required registers/multiplexers [20] and 2)
minimizing switching activity [19], [22]. During this step, knowledge
of the ICs input space is assumed to be known. This allows the power
ramifications of binding decisions to be evaluated [19], [22].

III. MOTIVATIONAL EXAMPLE: SECURITY-AWARE BINDING

Given the findings of prior research, outlined in Sec. I, there is
a strong need to think beyond the module when obfuscating ICs. If
we follow the conventional wisdom of pursuing module level locking
after the gate level configuration of modules are fixed we get stuck in
the dilemma of choosing high corruption versus high SAT resilience.
Achieving both objectives is critical. In this work, we show that
through “smart” obfuscation-aware resource binding decisions, we
can indeed satisfy both of these competing needs.

In the context of design obfuscation, binding impacts security
by mapping operations onto functional units (FU). This mapping
determines the types of values (input minterms) typically processed
on each FU. Because locking corrupts output for specific locked
inputs, this greatly impacts the lock-ability of an IC. Let us consider
an example to show the utility of a security-aware binding approach.

Scheduled Data

Flow Graph
a bcd e f

Bound Data Flow Graph

Binding 1

Binding 2

Clk 2

Exp. Input Occurrences:

Minterm 'x': OPp=6, OPg=1,
OP¢=0, OPp=10

Minterm 'y': OP=9, OPg=0,
OP¢=0, OPp=8

Exp. Input Occurrences:
Minterm 'x': FU1: 6, FU2: 11
Minterm 'y': FU1: 9, FU2: 8

Exp. Input Occurrences:
Minterm 'x': FU1: 16, FU2: 1
Minterm 'y': FU1: 17, FU2: 0

Fig. 1: Sample scheduled DFG and corresponding binding solutions.

A. Motivational Example: Overview

Consider the scheduled data flow graph (DFG) in Fig. 1A. This
DFG represents some behavioral code segment where each node is
an operation that must be applied to the data and each edge shows
the flow of data between operations. The DFG in the figure requires
2 cycles to execute (clk 1 and 2). During the first (second) cycle, 2
operations, OP4 and OPgr (OP¢ and OPp), must be completed.
Without the loss of generality, let us assume that each operation in
the figure is an add. To implement this DFG in hardware, 2 adder
FUs are necessary to execute the 2 concurrent add operations.

Resource binding specifies the mapping of the 4 add operations
onto the 2 allocated adder FUs. In Fig. 1B, we show the 2 possible
bindings for the scheduled DFG. For each binding, the green (red)
circled operations are mapped to FU 1 (FU 2). Let us assume that
a security-oblivious binding algorithm has selected binding 1 for the
design. After binding, a designer has decided to lock FU 1 to protect
the design. In this case, the best solution would be to lock a large
majority of input minterms to ensure the highest corruption at the
application level. However, due to the SAT resilience constraint, let
us assume we can only lock a single input minterm, randomly selected
to be z. If we are aware of the input distribution for each operation,
a common assumption for HLS [19], [22], we can determine the
expected number of occurrences of arbitrary input minterms for each
operation in the DFG during a typical workload. We have aggregated
the expected number of times input minterm x and y are applied to
each operation during a typical workload at the bottom of Fig. 1A.

Because we know the expected occurrences of input = for each
operation, we can estimate the number of locked inputs applied to
our locked adder (FU 1). This is the number of application errors
caused by the locking scheme. Notice that FU 1 in binding 1 executes
OP4, which is expected to operate on input z 6 times, and OPc,
which is expected to operate on input = O times. This means that
the bound/locked circuit is expected to inject 6 + 0 = 6 errors. We
have aggregated the expected occurrences of minterm x and y for
each FU-binding combination below Fig. 1B. Let us consider how
security-aware binding could increase the number of error injections.
B. Example 1: Obfuscation-Aware Binding

Consider the case where the logic locking configuration has been
specified prior to resource binding. Following our prior example, this
means that FU 1 will lock the input minterm . However, instead of
binding in a security-oblivious fashion, let us instead bind the DFG
in Fig. 1A to maximize the number of times the locked input (x) will
be applied to the locked FU (FU 1). In this case, binding 2 would be
selected, resulting in 6 + 10 = 16 application errors over a typical
workload. Such an approach has 2 key advantages. 1) The number
of errors injected by logic locking is more than doubled (16 vs. 6)
compared to our security-oblivious binding approach. Because the
number of locked inputs is static, this results in a substantial increase
in the corruption caused by logic locking without compromising
SAT resilience. 2) Errors are now injected during both clock cycles
of the schedule (clk 1 and 2) instead of only one (clk 1). This
opportunity for consecutive error injections increases the likelihood
of critically impacting the application. By binding to maximize the

application errors, a locking configuration that simultaneously causes
substantially more and higher quality application errors is produced.

C. Example 2: Binding-Obfuscation Co-Design

In addition to selecting which operations are bound to each FU, let
us also decide which input minterms to lock. Previously, we assumed
that only input = could be locked. If we simultaneously consider the
locked inputs and the binding in order to maximize the number of
application errors, we will lock input y in FU 1 for binding 2. Notice
that input y does not have either the highest total number of expected
occurrences, or the most occurrences for a single operation. However,
this locking configuration causes 9+8 = 17 application errors during
a typical workload. Not only does this 1) increase the number of error
injections by over 2x (17 vs. 6) compared to our security-oblivious
approach and 2) inject error during both cycles of the schedule, but
it also results in more errors than any configuration locking input x
could achieve. Thus, a co-design approach can further improve the
number and quality of application errors caused by locking.

D. Security-Aware Binding Problem Formulations

In both examples, the architectural context available during re-
source binding enabled us to create locked circuits causing over 2x
more application errors. This allows a designer to decrease the num-
ber of locked inputs, while simultaneously increasing the application
errors caused by the locking construction. Essentially, security-aware
binding decisions enable us to achieve higher attack resilience and
higher corruption simultaneously. Based on each example, we specify
a problem formulation that is addressed in the remainder of the work.
1) Obfuscation-Aware Binding: For this problem, we assume that
modules have already been locked to secure a known set of
error-causing locked inputs. Based on this configuration, we map
operations onto FUs (bind) to maximize application errors.

2) Binding-Obfuscation Co-Design: For this problem, we simul-
taneously select the binding and the locked input minterms to
maximize the application errors caused by locking.

IV. PROBLEM 1|: OBFUSCATION-AWARE BINDING

The obfuscation-aware binding problem assumes that the alloca-
tion/scheduling phases of HLS have occurred and a SAT-resilient
locking configuration (i.e. one that locks a sufficiently small number
of inputs) has been specified for the allocated FUs. The locking
specification must include 1) the number of FUs locked, 2) the
locking scheme used, and 3) the locked inputs. We also assume that
critical minterm locking schemes, such as SFLL-rem [5], have been
used so that locked inputs are static between wrong keys. Now, given
a list of FUs, a scheduled DFG, and locking details, we must map
each operation to an FU such that the application errors caused by
the locking construction are maximized. Doing so ensures that IC
corruption is maximized while maintaining SAT resilience (because
the locking construction was chosen to be SAT resilient a priori). To
address this, we have developed an objective cost function to quantify
the application errors caused by locking for a fixed binding.

A. Obfuscation-Aware Objective Cost Function

Suppose that we have scheduled and bound a DFG onto FUs,
some of which have been locked using critical minterm locking.
We aim to quantify the impact of these locked FUs on the error
of the DFG. We capture this error by counting the number of times a
locked input is evaluated by a locked FU during the DFG’s execution.
The objective is to maximize these error injecting events through
appropriate binding decisions. Let us define matrix K to represent
the occurrence of each locked input for each operation. The number
of times the locked input m is applied for operation n is K, . One
way to calculate K for a given DFG is to simulate the execution of the
DFG for “typical” input traces, or applications. These are commonly
assumed to be available during HLS [19], [22]. Given an input trace
for the DFG, we can perform time simulation to calculate the number
of times a given locked input is applied to each operation.

Based on K, we define an objective cost function to inform binding
that quantifies the expected number of application errors for a given

(®) scheduled DFG
a bcd e f g

Locking Config.

®®
®

@ Bipartite Binding
(Clk 1, t=1)

Clk1

Allocated FUs: 3
Exp. Input Occurrences: FU 1: Locked
Input 'x': OPA=6, OPg=4, OP¢=3, | | [ocked Input: X' Binding Solution for t=1:
OPp=0, OPg=10 Euzk I(-iOICkedt OP, mapped to FU2
’ ocked Input: 'y’
Input 'y': OPx=9, OPg=3, OPc=7, | | [FU) 3: Not | acked ?F:slrgapliei t;_F(l’Jj s
OPp=0, OPg=8 Locked Input: None | | |10t ©0st of Binding:

Fig. 2: Obfuscation-aware binding algorithm for clock 1 (t=1).

locking configuration in a bound DFG. To do so, assume that some
set of L FUs have been locked. Each locked FU, [€ L, locks a set
of inputs M; and binds a set of operations N;. The expected number
of application errors caused by this locking configuration is:

E=> 2 > Kmn @

leL meM; neN;

B. Obfuscation-Aware Binding Algorithm

Using the cost function in Eqn. 2, we develop a binding algorithm
that maps operations to FUs such that the number of application errors
(i.e. when locked inputs are applied to locked FUs) is maximized.
Consider a scheduled DFG, S, which spans s clock cycles. A set of
resources, R, has been allocated to bind the DFG. While we make
no assumptions as to the type (e.g. adder, multiplier, etc.) of the
resources and operations, we do assume that they are all the same
type. Thus, any of the resources in R can execute any operation in
the DFG. By handling each operation/resource type separately, this
assumption can be made without the loss of generality. Of these R
resources, a subset, L, has been locked (L C R). Each [€ L locks
a set of critical inputs M;, which are pre-determined.

During each cycle ¢ (t < s), a set of concurrent operations Ny € S
are scheduled. Binding requires us to map each operation in N; to
one of the allocated FUs (i.e. |R| > |N¢|). Consider the first cycle
of the DFG, ¢ = 1. To bind the operations at ¢ = 1 (/V1), we build
a weighted bipartite graph, B1 = (RU N1, E1). Each vertex r; € R
is an FU. Each vertex n; € Ni is an operation. If 7; can bind n;
(i.e. the FU 7r; is available and can run operation n;), an edge of
weight w; ; is added. This should be the case for all r;-n; pairs, so
a complete bipartite graph is produced. The weight, w; ;, is:

wij= Y Kmj 3

meM,;

where M; is the set of locked inputs for FU ¢ and K, ; is the
expected occurrences of locked input m € M; for operation j.
Therefore, w; ; is the number of times locked inputs will be applied
to resource ¢ if operation j is bound to it. Note that the edge
weights connected to non-locked FUs will be 0. Now, we solve
the max weight bipartite matching problem for B;, which can be
solved optimally in P-time. The resulting matching maps (binds) each
operation during clock ¢ = 1 to an available FU.

To demonstrate this algorithm, consider the DFG in Fig. 2A, which
spans 2 clocks. There are 3 FUs, R = {FU1, FU2, FU3}, allocated
to bind this DFG, shown in Fig. 2B. Of these FUs, 2 are locked, L =
{FU1, FU2}, with locked inputs Mpy1 = {z} and Mpy2 = {y}.
For this DFG’s typical input trace, the number of times each locked
input (z and y) was applied to each operation is below Fig. 2A. For
t = 1, the proposed algorithm produces the bipartite graph in Fig.
2C. A max weight matching of this graph selects the red and green
colored edges, mapping O P4 to FU2, with edge weight 9, and OPgp
to F'U1, with edge weight 4. FU3 is unused during this clock because
only 2 operations are executed. This produces a binding for clock 1
that injects 9 + 4 = 13 errors for the typical input trace.

The described approach produces a binding for clock ¢ = 1. This
algorithm must be repeated for the remaining s — 1 clocks to produce

a complete binding solution. Thus, we must generate and match a
bipartite graph, By, for the remaining ¢ = 2..s clocks in the schedule.
Notice that the considered operations change for each cycle (t), but
the FUs in R do not. Also, the bipartite graph for each cycle (By)
has no dependence on other cycles. Thus, binding decisions made
in one cycle do not conflict with another cycle, allowing each clock
cycle to be bound independently and in any order (separability).

By matching each set of concurrent operations to allocated re-
sources, we bind each operation to maximize the number of locked in-
puts applied to locked FUs during the typical input trace/application.
This maximizes the application errors caused by the locking config-
uration for the characteristic workload, as proved in Thm. 2.

C. Analysis of Obfuscation-Aware Binding Algorithm

To analyze the presented algorithm, we discuss 3 key properties.
1) Runtime Complexity: To bind an arbitrary scheduled DFG with s
cycles, the proposed algorithm must generate and match s complete
weighted bipartite graphs. Each graph has |V;| operations (sources)
that must be matched to one of the |R| resources (destinations)
with a maximum weight. A minimum weighted full match of
an m-source and n-destination bipartite graph can be performed
in O(mnlog(n)) [23]. By negating each edge weight (w; ;) and
assuming that |N,,| is the maximum number of concurrent opera-
tions in the DFG, obfuscation-aware binding can be completed in
O(s|Nm||R|log(|R|)). Thus, the algorithm runs in P-time.

2) Validity and Completeness of Binding Solution:

Theorem 1. The proposed obfuscation-aware binding algorithm will
always result in a valid and complete binding solution, if it exists.

We omit a detailed proof of this claim for brevity. However,
notice that during each clock cycle, bipartite matching ensures a valid
matching between operations and FUs. By definition, this means that
all operations in all clocks end up being bound to only one FU, with
no more than one operation in a cycle being bound to a given FU.
This ensures that the final solution is a valid and complete binding.
3) Optimality of Binding Solution:

Theorem 2. The obfuscation-aware binding algorithm Yyields the
maximum expected application errors for a locking configuration.
Proof. To bind a DFG, a bipartite graph must be generated and fully
matched for each cycle in the schedule (t = 1..s). Each graph has a
source node for every operation n € N; and a destination node for
each resource in R. Every source-destination pair is connected by an
edge of weight w; ;, which is equal to the number of occurrences
of each locked input for FU j during operation . A bipartite graph
defined in this way for cycle ¢ (1 <t < s) is necessarily independent
of the bipartite graph for all other cycles. This implies that the full
matching produced for each bipartite graph is independent. Therefore,
the binding for each cycle in the schedule is separable.

Now, consider that each edge weight in the bipartite graph is
equal to the number of occurrences of each locked input for FU
J during operation ¢ (i.e. expected error injections). By definition, a
maximum weight full matching of this bipartite graph corresponds to
the operation-FU mapping (binding) that causes the most expected
error injections. Hence, the full matching for each bipartite graph is
optimal for a given cycle in the DFG. Because each bipartite matching
produces the maximum error injections for that cycle and the bipartite
graph for each cycle is separable, the total binding solution yields the
maximum expected error injections for the locking scheme. O

Thus, the algorithm results in a binding with the highest possible
application corruption. Remember that the locking scheme specified
prior to binding ensured SAT resilience by limiting locked inputs
to be sufficiently small in number. Therefore, our obfuscation-aware
binding algorithm guarantees a locking scheme with the highest ap-
plication corruption, while ensuring that SAT resilience is maintained.

V. PROBLEM 2: BINDING-OBFUSCATION CO-DESIGN

The binding-obfuscation co-design problem relaxes our assumption
that the identity of locked inputs are specified before binding. Instead,
we assume only that the number of locked inputs are specified to

ensure a SAT resilient locking solution. These locked inputs are
to be chosen from some set of designer-specified candidate locked
inputs to optimize application error. To formalize this, we assume that
the allocation/scheduling phases of HLS have occurred and a SAT-
resilient locking configuration has been specified, including 1) the
number of resources locked, 2) the critical minterm locking scheme
used, 3) the number of locked inputs, and 4) a list of candidate locked
inputs. However, which specific inputs are locked from the candidate
list is not known and needs to be chosen. We must map each operation
to an FU and select locked inputs such that the application errors
caused by locking are maximized via the cost function in Eqn. 2.
A. Binding-Informed Obfuscation Algorithm

Consider an arbitrary scheduled DFG, S, which spans s clock
cycles. A set of R resources have been allocated to bind S. Once
again, we assume without the loss of generality that all operations
and resources are of the same type (e.g. add). This can be done
by handling each set of dissimilar operations separately. Of these R
resources, a subset (L) will be locked (L C R). Each [l € L locks a
set of inputs, M;, which must be chosen from a list of candidates.

We assume that this list of candidate locked inputs, denoted C, is
designer-specified. This set can be chosen by a variety of methods
(e.g. randomly, most commonly occurring inputs in the DFG, etc.).
We discuss strategies to choose C' in Sec. V-B, however, we largely
consider this to be beyond the scope of the work. For each locked
FU (I € L), we must select the most commonly occurring candidate
locked inputs among the operations bound to it to be in M;. In this
way, when we lock each input in M;, we produce a locked FU with
the maximum application error. While the exact input distribution for
each operation varies among workloads, we have applied a “typical”
input trace to our DFG to estimate the number of occurrences of each
input ¢ for operation j, denoted K; ; (Sec. IV-A).

Given a list of candidate locked inputs (C), we must find the
binding/locked input specification that produces the most expected
application errors for the DFG. Sec. IV-B defines an obfuscation-
aware binding algorithm that, given a specified set of locked inputs
(M;), returns the binding with the most expected application errors.
If we enumerate all combinations of candidate locked inputs from C
of size | M;| for each locked FU (I € L) and apply this obfuscation-
informed binding algorithm to each combination, we generate the
optimal binding for each enumerated set of locked inputs. By
comparing the total expected application errors for each enumerated
set (i.e. the total cost of each binding solution), we can determine
the optimal binding/locked input specification for the DFG.

This approach iterates over all locked input combinations, an expo-
nential number. However, many of these combinations are unlikely
to yield an optimal solution. For example, consider a set of FUs
locking a set of inputs that produce minimal application error. It
is unlikely that FUs locking these inputs can be combined into a
high error binding solution. However, this algorithm still evaluates
them. A good heuristic would focus on locked input combinations
causing substantial error for each FU, regardless of how other FUs are
locked, to ensure that the total error is very high. This can be achieved
by evaluating each FU sequentially. If we assume that the number
of candidate locked inputs (C) is upper-bounded by a predefined
constant (z), we can define a P-time heuristic:

1) Choose a single FU, I; € L. Assume all other FUs are unlocked.
2) Enumerate all locked input combinations (I zlel ‘v ‘) for ;.
3) Apply obfuscation-informed binding on each’ combination. Use

the max cost binding solution to fix the locked inputs for l;, M;,.
4) Consider a new locked FU, I; € L for which M;, has not been

fixed. With all prior M, fixed, repeat steps 2-3 to specify M;,.
5) Repeat step 4 until M; is chosen for each [€ L. Run obfuscation-

informed binding once more for the final binding solution.
B. Analysis of Binding-Obfuscation Co-Design

To analyze the proposed algorithms, we discuss 4 key properties.
1) Candidate Locked Input Selection: We consider the nuances of
candidate locked input selection to be out of scope. However, we

briefly note some possible ways to choose the members of C for
context. The most obvious relies on the “typical” input trace to
select the most common inputs in the DFG (i.e. the top ‘x’ most
common inputs). However, if the attacker has input distribution
knowledge, such an approach could leak candidate locked inputs,
making it disadvantageous. In this case, less common inputs, or even
a random set can be used. Regardless of the members of C', our
approach still maximizes locking-induced application errors. Thus,
binding-locking co-design will still increase application error over
conventional locking approaches considering the same locked inputs.
2) Runtime Complexity: The optimal algorithm iterates over all
locked input combinations for each locked FU. Given |L| locked

FUs that secure at most |M| inputs from a set of size |C|, there
L L.
are (Illall . combinations. This results in a non-polynomial runtime.

However, consider the proposed heuristic, which sequentially iterates
over locked inputs combinations for one FU at a time. Because |C|
is upper-bounded by a predefined constant ‘x’ for this heuristic, there
are (I Jffl) combinations per FU. This is upper-bounded by %% zisa
constant, so this upper bound is a constant, allowing it to be discarded
from the time complexity. If we use the P-time algorithm from Sec.
IV-B to evaluate each locked input combination for |L| FUs, our
heuristic runs in O(s|L||Nm||R|log(|R|)), a P-time solution.

3) Optimality of Binding Solution: The resulting binding/locking will
yield the maximum possible application errors, as quantified by the
cost function in Eqn. 2. To prove this, remember Thm. 2, which
proves that our binding algorithm maximizes errors when locked
inputs are specified. Because we iterate over all possible locked input
combinations in C, the resulting solution must cause the maximum
application errors possible for the DFG given the locking parameters.
On the other hand, while our P-time heuristic will still yield a locking
solution with substantial error, it no longer operates on every locked
input combination, so it may not be highest possible error.

4) Impact on Security: Consider the impact of co-design on the
application errors and SAT resilience of locking. Both our optimal and
heuristic algorithm configure binding/locking to optimize locking-
induced application errors for a fixed number of locked inputs.
Because the locked input count dictates the SAT resilience of locking,
our proposed approach produces a design that maximizes corruption
for an attacker without any compromise in SAT resilience.

C. Binding-Time Logic Locking Design Methodology

Consider a designer that has set a target application error rate
and a minimum SAT runtime permissible for a secure locking
configuration in their custom IC. With only minor modifications,
the proposed binding-locking co-design approach can be used to
design a locking configuration meeting both goals. Essentially, by
using our co-design approach to incrementally tune the number of
locked inputs in each FU, a locking configuration can be designed that
achieves a sufficient application error rate with the minimum number
of locked inputs, hence, the maximum SAT resilience. If the SAT
resilience of this locking configuration is insufficient, exponential

SAT iteration runtime locking schemes can be used alongside the
binding-obfuscation co-designed locking to increase SAT runtime to a
sufficient level. Exponential SAT iteration runtime schemes generally
incur too much design overhead to be used on their own. For example,
a 384-bit Full-Lock [7] scheme implemented in the b14 netlist of the
ISCAS’85 suite incurred a 192% increase in power and 61% increase
in area, while requiring < 10 minutes to unlock with a SAT attack.
This overhead is infeasible. However, our co-design approach uses
critical minterm locking, which incurs minimal overhead compared to
these techniques. So, by using low-overhead critical minterm locking
to achieve as much SAT resilience as possible, the design overhead
concerns associated with exponential SAT runtime schemes can be
minimized, while still meeting design goals.

VI. EXPERIMENTAL EVALUATION OF PROPOSED ALGORITHMS

To evaluate each proposed algorithm, we applied them to bind
the adders and multipliers in 11 benchmarks. Each benchmark was
made by isolating a C function from 1 of 8§ MediaBench benchmarks
[21] and extracting the corresponding DFG with SUIF. Each DFG
was scheduled to be executed on up to 3 FUs using a path-based
scheduler [24]. The resulting DFGs contained an average of 18.6
add and 10.6 multiply operations spanning 13.5 cycles. To serve as
the “typical” input trace/application for each benchmark, we used the
MediaBench-provided sample workloads. For this input trace, each
DFG was simulated and expected occurrences of input minterms for
internal operations were computed. This information, along with the
scheduled DFG, was used as input for each proposed algorithm. An
overview of the process to generate each benchmark is in Fig. 3.

Input Trace j

g . Exp. Input
> Schedulel]—)'Tm".'e Drlver‘J—)Occurrence
b Sched.
C/C++ Function

SUIF
Compiler

Simulator
Input \ Per Op.
DFGs

DFG
Fig. 3: Experimental flow to generate benchmarks.

To evaluate each algorithm we compared them to other common
binding algorithms with identical locking configurations. Specifically,
we used an area-aware approach [20], which minimizes register
count, and a power-aware approach [19], which minimizes switching
frequency, for comparison. For each benchmark, we enumerated all
combinations of {1,2,3} locked FUs locking {1,2,3} inputs each. We
then aggregated a list of the 10 most common inputs for each DFG
to serve as the candidate locked inputs. For the 9 possible locking
configurations (i.e. {1,2,3} locked FUs locking {1,2,3} inputs), we
created a bound/locked circuit securing each combination of the 10
candidate inputs for each locked FU. We used 1) obfuscation-aware,
2) binding-obfuscation co-design (optimal and P-time heuristic), 3)
area-aware, and 4) power-aware binding algorithms to generate each
locked circuit. We then calculated the ratio between the number of
application errors caused by each security-aware approach compared
to each area/power-aware approach with the same locking configura-
tion. The results were averaged over every locked FU count, locked
input count, and locked input combination for Fig. 4.

Increase in Application Errors Caused by Locking for Obfuscation-Aware Binding Over Area/Power-Aware Binding

-
o
9

-
o
™

Errors of Locking
=
o
E)

Increase in App.

dct ecb_enc4 fft fir jctrans2

jdmergel
Increase in Application Errors Caused by Locking for Binding-Obfuscation Co-Design Over Area/Power-Aware Binding

jdmerge3 jdmerge4 motion2 motion3 noisest2 Avg.

Increase in App
Errors of Locking

dct ecb_enc4 fft fir

jctrans2
Il Adder, Area-Aware Il Adder, Power-Aware

Il Adder, Area-Aware (Heuristic)

jdmergel

@A Adder, Power-Aware (Heuristic)

motion3 noisest2 Avg.
EEl Mult., Power-Aware
BB Mult., Power-Aware (Heuristic)

jdmerge3 jdmerge4 motion2
3 Mult., Area-Aware

EZZZ1 Mult., Area-Aware (Heuristic)

Fig. 4: Impact of security-aware binding on the application errors caused by locking during a typical workload compared to area-aware [20]
and power-aware [19] binding. Adder/multiplier binding were considered separately. No multipliers were present in the ecb_enc4 benchmark.

=
o
N

=
o
4

Increase in App
Errors of Locking

=
o
=)

17U

2 FUS 3 FUS

1 Lock \nP-2 Lock \09-3 Lock \nP: AVO-
Il Obf.-Aware vs. Area-Aware [P-Time Bind-Obf. Co-Design vs. Area-Aware
Il Obf.-Aware vs. Power-Aware HE P-Time Bind-Obf. Co-Design vs. Power-Aware

Fig. 5: Impact of locking configuration on errors caused by security-
aware binding. All results are normalized to the errors caused by the
same locking configuration applied after area/power-aware binding.

In this way, we compared each circuit created with a security-aware
algorithm for each enumerated locking/locked input configuration to
the same circuit incorporating an identical locking configuration cre-
ated with an area/power-aware algorithm. This directly quantifies any
increase in application errors due to our security-aware algorithms
across a variety of circuits and locking configurations.

A. Experimental Analysis

As shown by Fig. 4, obfuscation-aware binding increased the
application errors caused by the locking construction by 22x and 29x
compared to area and power aware binding, respectively. The optimal
binding-obfuscation co-design algorithm increased application errors
by 82x and 115x. Our P-time heuristic for this algorithm resulted less
than a 0.5% solution degradation, again increasing application errors
by 82x and 115x. This confirms the efficacy of our heuristic. As a
result, we rely on this P-time heuristic for the remainder of binding-
obfuscation co-design analysis. Each algorithm caused sizable in-
creases in application errors, without sacrificing SAT resilience.

We have aggregated the impact of locking configuration on the
efficacy of each proposed algorithm in Fig. 5. To generate Fig. 5, we
fixed a single locking parameter, listed on the x-axis, and averaged
our results over all other locking parameters (e.g. the “1 FU” bars
average over locking with {1,2,3} locked inputs). In this way, we
isolated the impact of each locking parameter on the efficacy of each
security-aware algorithm. Based on Fig. 5, increases in application
error remained consistently high in all cases. Remember, all increases
were normalized to the application errors caused by area/power-aware
binding for the same locking configuration (i.e. locked FU count,
locked input count, and locked input identity). Thus, Fig. 5 suggests
that security-aware binding will consistently produce a 10-150x
increase in errors, no matter the underlying locking construction.

Finally, we compared the design overhead of each proposed
algorithm to 1) area-aware binding [20], which minimizes register
count, and 2) power-aware binding [19], which minimizes switching
frequency. We show the corresponding increases incurred by our
security-aware algorithms on the register count and the switching rate
in Fig. 6. On average, our proposed algorithms performed similarly,
requiring ~4.7 more register count than area-aware binding and
incurring a 0.03 higher switching rate than power-aware binding. This
confirms the low overhead nature of each security-aware algorithm.

VII. CONCLUSION

In this work, we explored security-aware binding for HLS with 2
problem formulations. To solve them, we developed an objective cost
function that quantified the application errors injected by a locking
configuration for a fixed binding. We then proposed a security-aware
algorithm for both problems to maximize this cost function without
degrading SAT resilience. To evaluate each algorithm, we applied
them to 11 MediaBench benchmarks and their sample workloads. Our
proposed obfuscation-aware binding (binding-obfuscation co-design)
algorithm caused a 26x (99x) increase in locking-induced application
errors over alternative binding schemes with no reduction in SAT
resilience and only minimal degradation in area/power overhead.
Thus, each approach can ensure that locking achieves the highest
application corruption without sacrificing SAT resilience.

Security-Aware vs. Area-Aware Binding

B Obfuscation-Aware Binding HEE P-Time Bind-Obf. Co-Design

un

ONBO®O

Increase in
Register Count

ack IR ot A C I -L R e
o® o e g g P 00 o o
Security-Aware vs. Power-Aware Binding

I Obfuscation-Aware Binding HEE P-Time Bind-Obf. Co-Design

6‘50' p‘\IQ‘

- 0.08

Increase in
Switching Freq
o O O o
o o o o
o N B O

R Al ot

29 £} LI\ C} X2 (4O
9% (987 08" qOT G007 . oSt
00 e g0 @0 00 o

Fig. 6: Design overhead of proposed security-aware binding algo-
rithms compared to area-aware and power-aware binding algorithms.

e©- X

REFERENCES

[1] A. Chakraborty et al., “Keynote: A disquisition on logic locking,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 2019.

[2] M. Zuzak et al., “Trace logic locking: Improving the parametric space
of logic locking,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 2020.

[3] M. Yasin et al., “Provably-secure logic locking: From theory to practice,”
in Conference on Computer and Communications Security, 2017.

[4] A. Sengupta et al., “Atpg-based cost-effective, secure logic locking,” in
IEEE 36th VLSI Test Symposium (VTS). IEEE, 2018.

[5] ——, “Truly stripping functionality for logic locking: A fault-based per-
spective,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 2020.

[6] Y. Liu et al., “Strong anti-sat: Secure and effective logic locking.” in
International Symposium on Quality Electronic Design (ISQED), 2020.

[71 H. M. Kamali et al., “Full-lock: Hard distributions of sat instances for
obfuscating circuits using fully configurable logic and routing blocks,”
in Design Automation Conference (DAC), 2019.

[8] A. Sahaetal., “Lopher: Sat-hardened logic embedding on block ciphers,”
in 2020 57th ACM/IEEE Design Automation Conference (DAC), 2020.

[9] K. Shamsi et al., “Cross-lock: Dense layout-level interconnect locking
using cross-bar architectures,” in Great Lakes Symp. on VLSI, 2018.

[10] P. Subramanyan et al., “Evaluating the security of logic encryption
algorithms,” in International Symposium on Hardware Oriented Security
and Trust (HOST). IEEE, 2015.

[11] K. Z. Azar et al., “Smt attack: Next generation attack on obfuscated
circuits with capabilities and performance beyond the sat attacks,”
Transactions on Cryptographic Hardware and Embedded Systems, 2019.

[12] K. Shamsi et al., “On the impossibility of approximation-resilient circuit
locking,” in Intl. Symp. on Hardware Oriented Security and Trust, 2019.

[13] M. Zuzak et al., “Obfusgem: Enhancing processor design obfuscation
through security-aware on-chip memory and data path design,” in
International Symposium on Memory Systems. ACM, 2020.

[14] H. Zhou et al., “Resolving the trilemma in logic encryption,” in
International Conference on Computer-Aided Design (ICCAD), 2019.

[15] X. Li et al., “Application-level correctness and its impact on fault
tolerance,” in International Symposium on High Performance Computer
Architecture. IEEE, 2007, pp. 181-192.

[16] C. Pilato et al., “Tao: techniques for algorithm-level obfuscation during
high-level synthesis,” in Design Automation Conference, 2018.

[17] M. Yasin et al., “Sfll-hls: Stripped-functionality logic locking meets
high-level synthesis,” in Intl. Conf. on Computer-Aided Design, 2019.

[18] J. Chen et al., “Decoy: Deflection-driven hls-based computation par-
titioning for obfuscating intellectual property,” in Design Automation
Conference (DAC). IEEE, 2020.

[19] J.-M. Chang et al., “Register allocation and binding for low power,” in
ACM/IEEE Design Automation Conference (DAC), 1995.

[20] C.-Y. Huang et al., “Data path allocation based on bipartite weighted
matching,” in Design Automation Conference, 1991.

[21] C. Lee et al., “Mediabench: A tool for evaluating and synthesizing
multimedia and communications systems,” in International Symposium
on Microarchitecture. IEEE, 1997.

[22] A. Stammermann et al., “Binding allocation and floorplanning in low
power high-level synthesis,” in International Conference on Computer
Aided Design. IEEE, 2003.

[23] R. M. Karp, “An algorithm to solve the mx n assignment problem in
expected time o (mn log n),” Networks, 1980.

[24] S. O. Memik et al., “A super-scheduler for embedded reconfigurable
systems,” in International Conference on Computer Aided Design, 2001.

