
Hardware Anomaly Detection in Microcontrollers
Through Watchdog-Assisted Property Enforcement

Maksym Melnyk∗, Jacob Thomas∗, Max Wandera†, Ajesh Koyatan Chathoth†, Michael Zuzak∗
∗Rochester Institute of Technology, Rochester, NY USA

{mm6878, jbt5011, mjzeec}@rit.edu
†Eaton Corporation, Pittsburgh, PA USA

{MaxBWandera, AjeshKoyatanChathoth}@eaton.com

Abstract—The development of anomaly detection and trust
mechanisms for low-end microcontroller units (MCUs) has re-
ceived substantial attention. Prior approaches generally explore
either hardware or co-design-based security techniques to secure
low-end devices. However, in some cases, the necessary hardware
support is more expensive than the MCU itself, rendering these
approaches infeasible in some applications. In this work, we
propose a novel security mechanism that adapts prior custom-
hardware-assisted trust mechanisms to leverage only standard
on-chip hardware for anomaly detection and trust in low-end
MCUs. Specifically, we propose a runtime security property
enforcement mechanism that periodically checks user-defined
security properties to detect anomalous behavior using hardware
watchdog (HWD) timers. Since HWD timers are standard in most
low-end microprocessors, no additional hardware modifications
are necessary. For evaluation, we implemented the proposed
anomaly detection framework in an ARM Cortex-M4 device.
A set of 11 MITRE Common Weakness Enumeration (CWE)
benchmarks were implemented and executed on the MCU to
evaluate the approach. All benchmarks were detected within
40ms, with a corresponding memory overhead of 5.1kB and per-
formance overhead of less than 0.1%, highlighting the detector’s
practicality and low overhead.

Index Terms—IoT Security, Hardware Anomaly Detection,
Attestation, HWD-Assisted Property Enforcement

I. INTRODUCTION

Embedded devices are increasingly deployed in diverse ap-
plications, ranging from IoT devices to industrial automation.
These devices often operate on sensitive data and perform
safety-critical tasks [1], making them attractive targets for both
software [2]–[4] and hardware [5] attacks. Therefore, ensuring
the trust and security of these devices is vital.

Due to highly constrained design and cost budgets, low-
end MCUs generally lack hardware features found in more
resource-rich systems, such as trusted execution environments
and process isolation. This limitation has driven the develop-
ment of various trust and security mechanisms for resource-
constrained systems, including remote attestation [6]–[9] and
hardware property enforcement [10]–[12]. Prior research has
shown that the necessary assumptions for software-based attes-
tation schemes are generally infeasible in practice [13]. Con-
sequently, these approaches generally rely on either hardware-
assisted or co-design approaches that incorporate additional
custom hardware into the device to perform anomaly detec-
tion and ensure trust. These hardware modifications may be
impractical for low-end MCUs because: 1) the cost of such

hardware-assisted security mechanisms may exceed the cost of
the MCU core itself [8], and 2) device application developers
may lack the capabilities or design details for re-design.

This motivates our work. We consider the case where a low-
end MCU is deployed in a safety-relevant application where
trust is important, but the designer or user of the device is
unable or unwilling to modify the hardware. In this case,
existing trust and anomaly detection mechanisms that require
hardware assistance, such as attestation [6]–[9] or hardware
property enforcement [10]–[12], cannot be used. To address
this, we aim to adapt hardware property enforcement to a less
invasive implementation that uses standard on-chip hardware
to detect anomalies and facilitate trust in the device.

The role of hardware assistance in prior work is to ensure
that the trust mechanism cannot be disabled, even if an
adversary has seized control of the MCU. To address this,
we propose employing a hardware watchdog (HWD) timer to
ensure security properties are periodically checked/enforced. A
HWD is an always-on hardware timer that must be periodically
reset (“fed”) to avoid a mandatory system reset. These timers
are standard in most low-end MCUs (e.g., MSP430, STM-
series ARM Cortex-Mx). They are enabled during secure boot,
and cannot be disabled thereafter [14].

To periodically feed the HWD, a non-maskable interrupt
(NMI) will be configured to run at regular intervals. This
interrupt will trigger a handler that checks a set of predeter-
mined logical security properties against the processor state.
The NMIs will be periodically generated by a hardware-based
interrupt request. These security properties are logical formu-
las which characterize secure MCU states. They are evaluated
in the NMI handler and assess the security-relevant state of
the MCU (e.g., link register (LR), program counter (PC),
configuration registers, etc.) using these formulas. If none
of the properties are violated, the interrupt feeds the HWD
timer; otherwise, the HWD times-out, initiating a mandatory
shutdown sequence and notifying the user of the violated
security property. By doing so, the HWD provides hardware
assistance to ensure that security properties are periodically
enforced without custom hardware redesign.

Contribution: We design, implement, and evaluate HWD-
assisted property enforcement, a hardware-assisted trust and
anomaly detection framework for low-end MCUs. The pro-
posed approach relies on a HWD timer to periodically enforce

logical security properties. Because HWD timers are stan-
dard in most low-end MCUs, the proposed trust mechanism
functions without the need for custom hardware re-design,
which was required by prior work [6], [7], [9]–[12]. To
evaluate HWD-assisted property enforcement, we develop a
set of 8 properties to be enforced in low-end MCUs that
address 13 common MITRE common weakness enumerations
(CWEs) [15]. These properties are implemented via HWD-
assisted property enforcement in an STM-series ARM Cortex-
M4 (STM32L475) with a 40ms property checking interval.
Examples of each MITRE CWE were executed separately on
the MCU. All property violations were detected within 40ms,
which is determined by the time to the next property check,
with a RAM overhead of 5.1kB and a performance overhead
under 0.1%.

II. RELATED WORK AND PRELIMINARIES

A. Remote Attestation

Remote attestation (RA) is a challenge-response security
protocol that allows a trusted verifier to assess the integrity of
a prover’s memory [9]. Figure 1 provides an overview of RA.
The process involves four steps, numbered (1)-(4). First, the
verifier sends a challenge containing a secret-derived token and
a request for an integrity check. Second, the prover authen-
ticates a predefined region of memory, often by hashing the
memory contents and including some aspect of the challenge.
Third, the prover returns this response to the verifier. Finally,
the verifier checks the response to assess memory integrity.

Verifier Prover

(2) Attest

(4) Verify

Fig. 1: An overview of remote attestation (RA).

RA-based approaches have shown success in detecting var-
ious attacks, including data-oriented [2] and control-oriented
[3], [4] attacks . RA solutions can be software-based [16],
[17], hardware-based [18], [19], or hybrid [6], [8]. However,
hardware-based approaches are often prohibitively costly for
low-end MCUs [8]. Conversely, software-only mechanisms
require strong assumptions, making them largely infeasible
in practice [13]. Several hybrid approaches have succeeded
in low-end MCUs, but inherently require hardware support.
The proposed HWD-assisted trust mechanism in this work is
similar to RA-based approaches, with the HWD essentially
serving as an on-chip verifier for the MCU.

B. Hardware Property Enforcement

Another approach to anomaly detection in processors em-
ploys dedicated hardware support to enforce a security policy

on a system, which we refer to as hardware property enforce-
ment [7], [10], [11]. For example, SPECS [10] and FinalFilter
[11] propose modifying the processor pipeline to automatically
check a logical security policy and repair any violations at
runtime. While such approaches are effective, they rely on
hardware modification, which may be infeasible for low-end
MCUs. The proposed HWD-assisted trust mechanism in this
work relies on a similar formulation of security properties and
invariants enforced on the processor for anomaly detection.

C. Threat Model

We consider a scenario where an adversary aims to com-
promise a simple, low-end MCU (e.g., TI MSP430, ARM
Cortex-M0/4). Both software (e.g., malicious code execution)
and hardware (e.g., fault injection) attack modalities are within
scope. The adversary’s objective is to maliciously modify the
configuration or state of the victim MCU. More formally, we
define attack success as any modification of protected MCU
state or memory. The attacker can employ any strategy using:

• Physical access to a functional, deployed version of the
MCU. The adversary can interact with the MCU to
understand its operation, including input-output behavior.

• Network access to the device, including the ability to read
and write packets to the device network.

• The ability to interact with communication interfaces
(e.g., JTAG, I2C, etc.). The ability to use these interfaces
does not imply that the data will be processed.

A successful defense must detect any in-scope attack and
notify the user of a security violation in under 40 ms. We
consider the MITRE CWEs [15] in Table I to be the minimal
set of in-scope threats. This set contains a set of CWEs
that impact MCU memory or configuration registers from the
Top 25 Hardware CWEs list from MITRE. For evaluation, a
successful defense strategy is defined as one that mitigates test
instances of each CWE.

TABLE I: List of considered MITRE CWEs.

CWE [15] CWE Description

CWE-121 Stack-based Buffer Overflow
CWE-284 Improper Access Control
CWE-269 Improper Privilege Management
CWE-506 Embedded Malicious Code
CWE-1191 Improper Access Control for On-Chip Debug
CWE-1231 Improper Prevention of Lock Bit Modification
CWE-1233 Security-Sensitive Hardware Controls with

Missing Protection
CWE-1240 Use of a Cryptographic Primitive with a Risky

Implementation
CWE-1244 Asset Exposed to Unsafe Debug Access
CWE-1256 Improper Restriction of SW Interfaces to HW
CWE-1260 Improper Handling of Memory Overlap
CWE-1272 Sensitive Information Uncleared Before State

Transition
CWE-1274 Improper Access Control for Memory Containing

Boot Code

III. WATCHDOG-ASSISTED PROPERTY ENFORCEMENT

While both RA and hardware property enforcement ensure
MCU trust and integrity, they require dedicated hardware
support and may necessitate redesigning parts of the pipeline.
[10], [11]. Re-architecting processor hardware for specific ap-
plications is costly and often infeasible, especially for the low-
end hardware considered in this work. Thus, we aim to adapt
these approaches to develop a generic security mechanism
that provides hardware-assisted enforcement without custom
hardware support.

Specifically, we propose a property enforcement mechanism
similar to hardware property enforcement, as outlined in Sec.
II-B, but without requiring custom hardware redesign. The
main challenge is ensuring the execution of the security
mechanism, even if malicious hardware or software takes
control of the MCU. To address this, we explore the use of
a HWD timer to provide standardized hardware assistance.
A HWD timer is an always-on hardware timer that must be
periodically fed to avoid a mandatory reset. These timers are
standard in low-end MCUs and often cannot be disabled after
activation [14]. This allows periodic security property checks
to be linked to feeding the HWD, thereby ensuring that the
security mechanism remains active and the MCU continuously
enforces its security policy. Any violation or failure to run
security property checks will result in a HWD time-out,
forcing a mandatory reset of the MCU or triggering some other
remediating action (e.g., repairing the state). This guarantees
that security properties are always periodically enforced on
the system. In this section, we formalize HWD-based property
enforcement.

Figure 1

MCU Core

Anomaly Detector
Hardware
Watchdog

Timer

Security
Properties

𝑺𝑺𝑺𝑺, 𝑳𝑳𝑳𝑳,𝑺𝑺𝑷𝑷,𝑺𝑺𝑺𝑺𝑳𝑳,𝑴𝑴𝑴𝑴𝑺𝑺𝑴𝑴,
𝑩𝑩𝑴𝑴𝑺𝑺𝑩𝑩𝑺𝑺𝑳𝑳𝑩𝑩,𝑷𝑷𝑪𝑪𝑳𝑳, 𝑩𝑩𝑳𝑳𝑰𝑰, 𝒆𝒆𝒆𝒆𝒆𝒆.

MCU Address
Space

…

Hardware
State

Trust-Critical
Memory

Core
Registers

Fig. 2: Overview of HWD-assisted property enforcement.

A. HWD-Assisted Property Enforcement Overview

HWD-assisted property enforcement consists of several
interlocking components, depicted by the block diagram in
Figure 2. Let us consider the typical functionality of the MCU
as it is booted and performs its intended task. As early as
possible in the boot process (e.g., first-stage bootloader), a
HWD timer is enabled. This always-on hardware timer must
be periodically fed to avoid a mandatory reset. These timers
are standard in low-end MCUs and cannot be disabled after
activation [14]. The purpose of these timers is to maintain
system stability by ensuring the MCU is responsive. However,
in this context they are being leveraged to support security
property enforcement via periodic checks. After configuring

the HWD timer, a periodic non-maskable interrupt (NMI) is
configured. The non-maskable status of this interrupt ensures it
is promptly serviced and cannot be disabled or ignored. Within
the interrupt handler, a set of pre-defined security properties
for the MCU are checked to ensure they are satisfied. If
satisfied, the NMI feeds the HWD timer, allowing the MCU
to continue its intended tasks. If any property is violated,
a warning is issued and remediating action is taken (e.g.,
repairing the MCU state or resetting the MCU).

The security properties evaluated in the NMI handler serve
as a user-defined security policy for the MCU. These prop-
erties are logical statements that assess whether the system
is in an allowable/benign security state based on the state of
the MCU and its memory. This includes core registers (e.g.,
LR, PC), hardware configuration registers, and trust-critical
memory regions. While these properties are determined per
device based on the application, we provide a sample security
property alongside an illustrative example in Section III-B.

The core functionality of HWD-assisted property enforce-
ment can be represented with timing diagrams, commonly
employed in work on RA, that illustrate the interactions
between the prover (the MCU core) and the verifier (the HWD
timer and property enforcement NMI). To outline the intended
functionality, we discuss three cases, one where the MCU
functions as intended and two where anomalous behavior is
present in the device. In each case, we assume the MCU is
already booted and running.

HWD
(Verifier)

MCU
(Prover)

Verify:
Evaluate
Security

Properties

Continue
Operation

HW Timer
Interrupt

HWD
(Verifier)

MCU
(Prover)

A

HWD
Timeout

HW Timer
Interrupt

Shutdown

B HWD
(Verifier)

MCU
(Prover)

Verify:
Evaluate
Security

Properties

HW Timer
Interrupt

Remediating Action:
Shutdown, Repair
State, etc.

1

3

1 1

3

Fig. 3: Benign/intended behavior timing diagram for HWD-
assisted property enforcement.

1) Case 1 – Intended Operation: This scenario considers
the normal operation of the device and is depicted in Figure 3.
The function of HWD-assisted property enforcement proceeds
as follows. 1 : a hardware timer triggers a periodic NMI
requesting that the security properties be checked. 2 : The
MCU reports its current state by servicing the interrupt and
ceding control to the handler. 3 : The MCU state and memory
contents are verified in the handler by checking the logical
security properties. 4 : If no violation of security properties
is detected, the HWD timer is fed to ensure that the device
continues operating. Control is then ceded back to the MCU
to resume normal operation until the next report is requested.

2) Case 2 – Property Check Disabled: This scenario con-
siders when the NMI is bypassed or disabled, preventing
a security property check from occurring. This scenario is

HWD
(Verifier)

MCU
(Prover)

Verify:
Evaluate
Security

Properties

Continue
Operation

HW Timer
Interrupt

HWD
(Verifier)

MCU
(Prover)

A

HWD
Timeout

HW Timer
Interrupt

Shutdown

B HWD
(Verifier)

MCU
(Prover)

Verify:
Evaluate
Security

Properties

HW Timer
Interrupt

Remediating Action:
Shutdown, Repair
State, etc.

1

3

1 1

3

Fig. 4: Anomalous behavior timing diagram for HWD-assisted
property enforcement.

depicted in Figure 4 A and described below. 1 : Because the
property-checking NMI was disabled, the report interrupt is
never requested and the property-checking handler is never
executed. This allows the device to continue operating without
any security checking. However, in most MCUs, the HWD
timer cannot be disabled without resetting the device [14].
Thus, while property checking is disabled, the HWD timer
is not. Since feeding the HWD timer is conditioned on all
security properties being satisfied, the timer will not be fed.
Once a timeout occurs, a mandatory device reset will be
triggered and a violation (i.e., disabled property checking) will
be reported to the user. Hence, the anomalous behavior will
still be detected and remediating action will be taken even
when the property checking is disabled.

3) Case 3 – Violated Security Property: This scenario
considers when a security property is violated. It is depicted
in Figure 4 B and described below. 1 : A hardware timer
triggers an NMI to check the security properties. 2 : The MCU
reports its current state by servicing the interrupt and ceding
control to the handler. 3 : During the security property check,
a violation is detected. Instead of feeding the watchdog and
ceding control as was done in Case 1, the user is notified of
the violation and remediating action is taken (e.g., restoring
the device to a secure state or resetting it).

B. Illustrative Example: Weak Readout Protection

We use a weak implementation of readout protection (RDP)
discovered in STM32F0-series devices to illustrate the con-
cepts underlying HWD-assisted property enforcement. RDP is
employed in MCUs to protect system firmware against unau-
thorized reads or modifications. Prior work has demonstrated
that weak RDP implementations in STM32F0 devices could
be exploited to extract firmware in production devices [20].
Specifically, the authors demonstrated that fault injection could
be used to exploit weak bit mappings, downgrading the RDP
protection and allowing the firmware to be read.

HWD-assisted enforcement relies on a set of logical proper-
ties. For detection, the relevant security properties must first be
formalized. For this example, we define our security property
as: “The RDP mode is always level 2”. Enforcing this property
at all times will protect the firmware from being read out. This

property can be checked by ensuring two registers, nRDP and
RDP , always contain a specific value, defined by Eqn. 1.

(nRDP = 0x33) ∧ (RDP = 0xCC) (1)

A NMI will be configured to periodically check this security
property before feeding the HWD timer. Let us assume fault
injection has been used to modify the RDP configuration as
described by [20]. In this scenario, the periodic NMI will
trigger a security property check. The handler for this NMI
will identify that the RDP configuration has been modified, a
violation of the security property. This will cause the user to
be notified and initiate a mandatory device reset. We note that
the time to detect such anamolous behavior is determined by
the HWD timeout and the security property check frequency,
which is set by the designer. Hence, the maximum time
to detection is a configurable, designer-specified parameter.
Additionally, notice that regardless of the mechanism that
modifies the RDP configuration, ranging from hardware tro-
jans to software exploits, the anomaly will still be detected and
remediated, underscoring the generalizability of this approach.

C. Discussion of Merits and Limitations

We highlight three merits of the proposed approach. 1)
HWD-assisted property enforcement provides a robust method
for enforcing security properties without the need for custom
hardware modifications, unlike prior work on RA [6], [8],
[18], [19] and hardware property enforcement [10], [11]. 2)
The proposed approach employs symptom-based detection,
focusing on the impacts of potential security breaches on the
MCU state rather than targeting specific vulnerabilities. This
facilitates the detection of unknown vulnerabilities or security
bugs, as highlighted by the illustrative example in Section III-B
where modifications of RDP could be detected, regardless of
their cause. 3) HWD-assisted property enforcement is generic,
relying only on standard hardware components (i.e., a HWD
timer) with no dependence on architecture or operating system.
This allows for broad application across different platforms.

We identify three limitations: 1) HWD-assisted property
enforcement can detect only threats that produce observable
effects in MCU memory/state. Attacks that do not alter MCU
state or only alter it transiently with no lasting effects will not
be detected, allowing an attacker to clean up before property
checks. However, property checks can not be masked and can
be tuned to prevent such transient attacks. 2) Without privilege
support, an adversary could disable property checking and feed
the HWD timer directly. Mechanisms to mitigate this include
using a trusted interrupt (e.g., secure interrupts in ARM
TrustZone [21]) or requiring higher privilege to feed the timer.
An off-chip HWD timer using a cryptographic nonce or device
secret could also prevent unauthorized feeding. 3) HWD-
assisted enforcement assumes the MCU was secure during
production and the HWD timer is implemented properly.

IV. CASE STUDY AND EVALUATION

To evaluate HWD-assisted property enforcement, we imple-
mented it in an ARM Cortex-M4 (STM32L475) to enforce a

TABLE II: List of enforced security properties.

Security Property Security Property Check Relevant CWEs
1) Program counter remains in expected range min address < SavedPC < max address CWE-1260, CWE-506

2) Locked memory values are never modified locked = saved (for all locked memory) CWE-1231

3) Stack and heap spaces do not exceed given sizes *CanaryLocation = CanaryValue CWE-121, CWE-506

4) Sensitive info cleared on state transition SensitiveData = ClearState if LowPowerFlag = 1 CWE-1272

5) Sensitive hardware configuration not changed after
secure boot

Saved configuration = current configuration CWE-1231, CWE-1233, CWE-1256

6) Debug mode is never enabled. CoreDebug→CDEBUGEN = 0 (i.e., not set) CWE-1191, CWE-1244, CWE-506,
CWE-284, CWE-269

7) All secure boot stages run Boot segment counter = 2 (i.e., expected number) CWE-1274

8) All AES rounds run Round count = 10-14 (i.e., expected number) CWE-1240

set of 8 logical security properties based on the set of MITRE
CWEs from the threat model in Section II-C. We use this
implementation as a case study for evaluation.

A. Formalizing Security Properties

We developed a set of logical security properties based on
the selected CWEs enumerated in Table I. These properties,
outlined in Table II, will be enforced to detect anomalous
behavior on the MCU. Each security property has a corre-
sponding logical check that is implemented in the property
enforcement NMI of the evaluation platform. This set of
security properties is selected without the loss of generality.
They are not intended to represent a comprehensive security
policy, but rather to serve as a representative case study to
evaluate the proposed approach and quantify its overheads.
A variety of security policies for embedded systems, such as
those proposed in [10], [22], could also be adopted by the
HWD-assisted security mechanism proposed in this work.

B. Hardware Platform and Evaluation Methodology

A prototype implementation of HWD-based property en-
forcement was developed on an STM32L475, an ultra-low-
power MCU with an ARM Cortex-M4. The device used X-
CUBE-SBSFU for secure boot, a secure engine core, and a
secure bootloader. FreeRTOS served as the OS. FreeRTOS
served as the OS, running a sensor polling program that
encrypted and transmitted data over UART. HWD-assisted
property enforcement was implemented as described in Sec-
tion III-A. The independent watchdog timer (IWDG) was
configured with a 40ms timeout to serve as the HWD. General-
purpose hardware timer 16 (TIM16) was configured to gener-
ate NMIs to trigger property checks. In the TIM16 interrupt
handler, the security properties in Table II were checked. If no
violations were found, the IWDG was fed. State information
for property checking, as defined in Table II, was extracted
from system registers, memory, and peripherals.

To evaluate the prototype platform, a set of benchmark
anomalies were developed, each targeting a specific security
property in Table II. Table III provides a brief description
of each benchmark anomaly and the corresponding security
property it violates. Each anomaly was produced using the

MCU’s debug interface to simulate the anomalous behavior
and assess the performance of the prototype platform.

C. Experimental Results

We applied the 11 benchmark anomalies outlined in Table
III to the STM32L475 prototype. Corresponding performance
and overhead metrics were evaluated and are discussed below.

1) Anomaly Detection Rate: To assess the anomaly de-
tection rate, the 11 benchmark anomalies were executed on
the STM32L475 device 100 times. Each benchmark was
launched in a separate trial without any synchronization to
the current state of the MCU or the proposed solution. In all
trials, the HWD-assisted property enforcement detected each
of the 11 anomalies within 40ms. This is unsurprising because
the maximum detection time is determined by the property
checking interval (i.e., 40ms for this experiment). This interval
can be configured by the designer based on application to im-
prove maximum-time-to-detection at the expense of overhead.
Additionally, because each benchmark was launched without
any synchronization to MCU state, the detection time was
uniformly distributed in the 40ms property checking interval.

2) False Detection Rate: To assess the false detection rate,
the prototype device was operated for 500 hours (approxi-
mately 21 days). During this period, both the detector and user
code were running to observe if any benign behavior would
be flagged as anomalous. No anomalies were detected during
this time. This is unsurprising as the detector checks logical
properties that are not violated during normal operation.

3) Performance Overhead: The detector overhead was cal-
culated by comparing the time spent on detector code to the
time spent on other code. This was averaged over 1 hour.
The detector took an average of 34 µs per 40ms HWD feed
interval. Other user code accounted for the remainder of that
interval. This results in a performance overhead under 0.1%.

4) Memory Overhead: Based on the prototype implemen-
tation, the memory (i.e., RAM) overhead for the detector was
5.1kB, which is under 4% of the available RAM on the device.

5) Evaluation Summary: The results of this case study
support the efficacy of the proposed approach. All 11 anomaly
detection benchmarks were successfully identified and no
false detections were observed. Additionally, the overheads

TABLE III: Benchmark anomaly library for the evaluation of HWD-assisted property enforcement prototype platform.

Security Property Test Description
1 Program counter remains in ex-

pected range
Force Invalid PC Location: Jump to an out-of-bounds function in a modified image to simulate code injection
and improper execution.

2 Locked memory values are never
modified

Overwrite Locked Memory: Overwrite locked memory addresses via JTAG to simulate an attack or data
corruption.

3 Stack and heap spaces do not
exceed given sizes

Overwrite Stack Frame: Perform stack buffer overflow, overrunning a stack buffer to modify the link register
contents.

4 Stack and heap spaces do not
exceed given sizes

Overwrite Heap: Allocate memory in the heap larger than available heap memory.

5 Sensitive info cleared on state
transition

Verify State Information: A modified device image that removes clean-up methods for low-power mode
transition.

6 Sensitive hardware configuration
not changed after secure boot

Overwrite Configuration Registers: Modify various protected hardware timer configuration registers via
JTAG.

7 Sensitive hardware configuration
not changed after secure boot

Fault Injection Attack: Use electromagnetic fault injector to modify protected hardware state.

8 Debug mode is never enabled Activate Debug Mode: Custom firmware image that leaves debug mode enabled.

9 Debug mode is never enabled Activate JTAG Interface: Custom firmware image that enables JTAG interface.

10 All secure boot stages run Bypass Secure Boot Segment: Modified secure boot that exits early from second-stage boot loader segment,
failing to write segment complete flag.

11 All AES rounds run Early Exit from AES: Custom TinyAES implementation that exits after 10 rounds with a 256-bit key.

remained well within the capabilities of low-end MCUs,
supporting the practicality of the proposed approach.

V. CONCLUSION

In this work, we proposed HWD-assisted property enforce-
ment for anomaly detection in low-end MCUs. This approach
adapts existing custom-hardware-assisted trust mechanisms to
utilize only standard on-chip hardware. The solution periodi-
cally checks user-defined security properties to detect anoma-
lies. Security property checking is enforced through a HWD
timer, which is standard in most low-end microprocessors,
eliminating the need for additional hardware modifications.
We evaluated this anomaly detection framework on an ARM
Cortex-M4 device, successfully detecting all 11 anomaly
benchmarks within 40ms. The method exhibited a small RAM
overhead of 5.1kB and a performance overhead less than 0.1%.

VI. ACKNOWLEDGEMENTS

This work was supported by Eaton Corporation. The con-
tents of this work do not necessarily reflect the position or
policy of Eaton Corporation.

REFERENCES

[1] A. Alwarafy et al., “A survey on security and privacy issues in edge-
computing-assisted internet of things,” IEEE Internet of Things Journal,
vol. 8, no. 6, pp. 4004–4022, 2020.

[2] L. Szekeres et al., “Sok: Eternal war in memory,” in 2013 IEEE
Symposium on Security and Privacy. IEEE, 2013, pp. 48–62.

[3] C. Cowan et al., “Buffer overflows: Attacks and defenses for the vulner-
ability of the decade,” in Proceedings DARPA Information Survivability
Conference and Exposition. DISCEX’00. IEEE, 2000.

[4] R. Roemer et al., “Return-oriented programming: Systems, languages,
and applications,” ACM Transactions on Information and System Secu-
rity (TISSEC), vol. 15, no. 1, pp. 1–34, 2012.

[5] A. Gangolli, Q. H. Mahmoud, and A. Azim, “A systematic review of
fault injection attacks on iot systems,” Electronics, 2022.

[6] A. Caulfield, N. Rattanavipanon, and I. D. O. Nunes, “{ACFA}: Secure
runtime auditing & guaranteed device healing via active control flow
attestation,” in 32nd USENIX Security Symposium, 2023.

[7] L. Davi et al., “Hafix: Hardware-assisted flow integrity extension,” in
Design Automation Conference (DAC), 2015.

[8] I. D. O. Nunes, S. Jakkamsetti, and G. Tsudik, “Tiny-cfa: Minimalistic
control-flow attestation using verified proofs of execution,” in Design,
Automation & Test in Europe Conference & Exhibition, 2021.

[9] B. Kuang et al., “A survey of remote attestation in internet of things:
Attacks, countermeasures, and prospects,” Computers & Security, 2022.

[10] M. Hicks et al., “Specs: A lightweight runtime mechanism for pro-
tecting software from security-critical processor bugs,” in Proceedings
of the Twentieth International Conference on Architectural Support for
Programming Languages and Operating Systems, 2015, pp. 517–529.

[11] C. Sturton et al., “Finalfilter: Asserting security properties of a processor
at runtime,” IEEE Micro, vol. 39, no. 4, pp. 35–42, 2019.

[12] T. Nyman et al., “Hardscope: Thwarting dop with hardware-assisted
run-time scope enforcement,” arXiv preprint arXiv:1705.10295, 2017.

[13] C. Castelluccia et al., “On the difficulty of software-based attestation
of embedded devices,” in Proceedings of the 16th ACM conference on
Computer and communications security, 2009, pp. 400–409.

[14] STMicroelectronics, RM0351 ARM-Based MCUs Reference Manual,
STMicroelectronics, 2023.

[15] MITRE Corporation, “Common Weakness Enumeration (CWE),” 2024.
[Online]. Available: https://cwe.mitre.org/

[16] A. Seshadri, M. Luk, and A. Perrig, “Sake: Software attestation for key
establishment in sensor networks,” in Distributed Computing in Sensor
Systems. Springer, 2008, pp. 372–385.

[17] R. Kennell and L. H. Jamieson, “Establishing the genuinity of remote
computer systems,” in 12th USENIX Security Symposium, 2003.

[18] X. Kovah et al., “New results for timing-based attestation,” in 2012
IEEE Symposium on Security and Privacy. IEEE, 2012, pp. 239–253.

[19] D. Schellekens, B. Wyseur, and B. Preneel, “Remote attestation on
legacy operating systems with trusted platform modules,” Science of
Computer Programming, vol. 74, no. 1-2, pp. 13–22, 2008.

[20] J. Obermaier and S. Tatschner, “Shedding too much light on a micro-
controller’s firmware protection,” in USENIX Workshop on Offensive
Technologies (WOOT), 2017.

[21] S. Pinto and N. Santos, “Demystifying arm trustzone: A comprehensive
survey,” ACM computing surveys (CSUR), vol. 51, no. 6, pp. 1–36, 2019.

[22] V. Lotz, V. Kessler, and G. H. Walter, “A formal security model for
microprocessor hardware,” IEEE Transactions on Software Engineering,
vol. 26, no. 8, pp. 702–712, 2000.

