Memory Locking: An Automated Approach to
Processor Design Obfuscation

Michael Zuzak and Ankur Srivastava
University of Maryland, College Park
mzuzak @umd.edu, ankurs@umd.edu

Abstract—Conventional logic obfuscation techniques largely
focus on locking the functionality of combinational modules.
However, for processor design obfuscation, module-level errors
are tangential to the fundamental adversarial goal: to produce
a processor capable of running useful applications. As noted
in previous work such as [1], module-level locking poses the
following problem: high corruption in a locked module results
in a high application-level error rate, but fundamentally leads to
SAT attack susceptibility. Therefore, for combinational, module-
level locking, increases in application-level error rates are accom-
panied by a corresponding increase in SAT susceptibility and vice
versa. To address this, we introduce an automated and attack-
resistant obfuscation technique, called memory locking, which
targets on-chip SRAM. We demonstrate the application-level
effectiveness of memory locking through system-level simulations
of obfuscated processors.

I. INTRODUCTION

Due to the proliferation of custom IC design and the esti-
mated $15-20 billion investment required to setup a fabrication
line for the smallest transistor size by 2020 [2], many IC
design companies have gone “fabless,” relying on unaffiliated
foundries to fabricate their intellectual property (IP). These
untrusted foundries have raised concerns of piracy as the capa-
bility to reverse-engineer GDSII files to pirate, counterfeit, or
overproduce ICs has been demonstrated. In response to these
capabilities, the hardware security community has proposed
logic obfuscation techniques to thwart would be pirates [3].

Previously, research into logic obfuscation has been dom-
inated by logic locking which involves the insertion of key-
driven accessory logic such as XOR/XNOR gates, multiplex-
ers, or look-up tables into combinational modules within an
IC [3]. In response to these techniques, Subramayan et al.
proposed a satisfiability (SAT) attack which, while an NP-
hard formulation, was shown to unlock 95% of examined
logic locked circuits within 10 hours [4]. The proposed SAT
attack leverages a SAT solver to iteratively find a set of
special inputs, known as distinguishing inputs (DI), which
are used to eliminate the set of incorrect keys. A variant
of SAT attack called AppSAT [5] was developed with the
objective of finding approximate keys which minimize output
corruptibility in a given time by relaxing the guarantee of
complete logical correctness. These approximate keys are
often extremely accurate, leaving minimal error rates in an
improperly keyed IC.

In response to SAT-based attacks, the hardware security
community has diverged into two primary approaches: non-
digital obfuscation (i.e. delay locking [6]) and SAT resistant
logic blocks (i.e. Anti-SAT block [7], SARLock [8], or SFLL
[1]). Recent work in [9] proposed the TimingSAT attack which
was able to unlock delay based obfuscation techniques such as
[6] using a SAT formulation. While Anti-SAT and SARLock
are resilient to SAT attack, they succumb to AppSAT [5] as

extremely low output corruptibility approximate keys can be
found. This led to stripped functionality logic locking (SFLL)
[1], a technique enabling a quantifiable trade-off between out-
put corruptibility and attack resilience. The work in [1] shows,
using provable methods, that increasing output corruptibility
is bound to reduce SAT attack complexity.

In this work, we diverge from the idea that module-level
errors are adequate to thwart piracy. We argue that the at-
tacker’s goal in processor piracy is not to unlock individual
modules, but to sufficiently unlock the system so that it can
be used to execute target applications successfully. Pairing this
subtle change in attacker with the findings of [1], we arrive at
a central theme of this work: a challenging trade-off exists in
the fundamental assumptions of proposed combinational logic
obfuscation techniques. In order to achieve a high amount of
application corruptibility, the module-level corruptibility must
be very high. However, a high module-level corruptibility in-
evitably makes the locked IC susceptible to SAT and AppSAT
type attacks. We demonstrate that to achieve the module-
level error rates sufficient for the denial of application-level
functionality for a processor, one must design a locked circuit
which is inherently SAT susceptible.

To address this, we propose memory locking, an au-
tomatable logic obfuscation technique capable of denying
application-level functionality to the adversary while main-
taining SAT resistance. We target on-chip SRAM circuitry
due to the 50-90% of transistor count dominated by SRAM-
related circuitry in modern processors [10]. This creates sig-
nificant flexibility in obfuscatable location and functionality.
Additionally, the analog effects governing SRAM make it
resistant to many proposed attack methodologies such as
SAT-based attacks. We then demonstrate the application-level
effectiveness of memory locking compared to prior art with
system-level simulations using GEMS5 [11] to close the loop
between module-level locking and its architectural impact.

II. MOTIVATION

We motivate our work with a demonstration of the un-
derlying trade-off involved in the combinational obfuscation
of processor ICs. At its core, the module-level error rates
sufficient for the denial of application-level functionality yields
a circuit which is inherently SAT susceptible. We arrive at this
conclusion experimentally, leveraging derivations in [1], [7].

A. Attacker Model

The attacker is an untrusted foundry with the goal of
obtaining a key enabling the correct functionality of a logically
obfuscated processor through the use of a locked gate-level
netlist and an activated, black-box oracle IC. This is a standard
attacker model [5]-[7], however, in each cited work, it is
applied to combinational circuits. In this work, we enlarge our

100 A

50

% Benchmark Runs
with Unrecov. Error

0 8 16 24 32 40 48 56 64
AppSAT Iterations

Fig. 1: Application failure rate of PARSEC benchmarks on SFLL locked,
AppSAT attacked netlist.

view to consider the processor architecture as a whole, rather
than individual modules. Using module-level error rates to
evaluate the effectiveness of architectural piracy is insufficient.
Other fields have extensively studied a similar concept with
respect to ’soft errors” such as [12], which states that many
soft errors occurring in processors are innocuous when viewed
architecturally and have no effect on application-level perfor-
mance. We argue that this is also the case in logic obfuscation.

B. Relationship Between SAT Susceptibility and Error Rate

The work in SFLL [1], Anti-SAT [7], and SARLock [8]
mathematically demonstrates that increases in module-level
error rates directly correspond to decreases in the complexity
of a SAT attack against the circuit. This is the case because
increasing the number of module-level errors for any given
wrong key leads to a necessary corresponding increase in
the overlap of incorrect primary inputs between multiple
wrong keys. When several wrong keys share common incorrect
primary inputs, the adversary is able to eliminate several keys
by selecting any shared primary input as a DI. The runtime
of a SAT attack is dictated by the number of DIs which must
be found to eliminate all wrong keys, therefore, increasing
the number of keys which can be eliminated with a given DI
inherently reduces SAT attack runtime because it reduces the
number of DIs which must be found. We are able to create SAT
resilience by limiting the number of wrong keys which can be
eliminated with any given DI, hence limiting our module-level
error rate. We refer the interested reader to the derivations in
[1], [7] for further details of this relationship.

C. Attacking Combinationally Locked Processors

We begin by demonstrating successful attack results on
real MIPS and Motorola 68000 (M68000) processor netlists
obfuscated using both SFLL [1] and Anti-SAT [7] to prevent
IC piracy. By choosing one RISC and one CISC architecture,
we hope to provide a reasonable cross section of processor
netlists. As SFLL and Anti-SAT have been proposed for use
in both processor control and data path logic [13], we will
obfuscate circuitry in each path.

For data path circuitry, we rely on ALU locking, locking
both the adder and multiplier circuits using both SFLL and
Anti-SAT. We have targeted adder and multiplier circuits as

Control Circuit [[SAT Att. Runtime [Mod. Att. Runtime
SAT Susceptibility: SFLL Locked Control Logic
MIPS Inst. Dec. (RISC) 148493 sec 0.0123 sec
M68000 Inst. Dec. (CISC) [99331.4 sec [2884.95 sec
SAT Susceptibility: Anti-SAT Locked Control Logic
MIPS TInst. Dec. (RISC)] 132867 sec [0.0292 sec
M68000 Inst. Dec. (CISC) || 102054 sec | 2921.36 sec

TABLE I: SAT attack runtime for processor control logic.

—— blackscholes 100 A
bodytrack
dedup

ferret
fluidanimate
freqmine
streamcluster
swaptions
— X264

t

% Benchmark Runs
with Unrecov. Error
w
o
|

t

2'33 250 257 254 251 2'13 215 212 2'9 2'6 2'3 2'0
SAT Susceptibility (Required Dls)

Fig. 2: Relationship between SAT susceptibility and application-level error
rates in obfuscated processor IC.

they are sufficiently large netlists to provide SAT resistance
and are critical for processor functionality. We have locked
both netlists (RISC and CISC) with the configurations pro-
posed in their respective work ([1] and [7]). SFLL locked
netlists were locked with 128-bits of conventional logic lock-
ing [14] and the maximum size SFLL block [1], using all
available input bits to the netlist. The SFLL locked adder and
multiplier netlists had a single stripped functionality I/O pair,
as was done in the fabricated processor IC example in [1].
The Anti-SAT block was similarly configured with 128-bits
of conventional logic locking [14] alongside the maximum
size Anti-SAT block [7], using all netlist inputs. For control
path circuitry, we selected the largest control circuit (by gate
count) to be targeted for locking. In both netlists (RISC and
CISC), this was the instruction decoder stage of the pipeline.

We utilize a SAT based methodology to attack both the
data and control path locks of the SFLL [1] and Anti-SAT [7]
secured M68000 and MIPS netlists. We begin by unlocking
the control circuitry through mounting a SAT attack [4] on
each of the locked instruction decoder netlists. Note that the
control circuitry was locked using techniques which provide
strong theoretical guarantees. However, by its very nature the
controller is also rather small thereby making an exhaustive
search of the input space feasible. Moreover the controller
opcodes are publicly known in many processors [15] and tend
to only utilize a small portion of the controller input space.
Hence, a ”modified” SAT attack which exclusively searches
for a key which unlocks these inputs can be easily launched.

We mounted both of these attacks (one in which SAT is
directly applied and one in which SAT is modified to unlock
only valid instruction opcodes) on the locked decoder netlists
and recorded the results in Table I. We were able to determine
a key fully unlocking each netlist, regardless of locking
technique, within 1 hour using the modified SAT formulation
described above. Because decoder circuitry was the largest
control circuit in both cases, it appears that control circuitry
is not complex enough to provide resistance to SAT-based
attacks, even in the presence of SAT-resistant techniques.

We now turn our attention to the data path. SAT resistant
locking paired with the size and complexity of ALU circuits,
compared to control logic, leaves us unable to mount a
traditional SAT attack in a timely fashion. Instead, we mount
an AppSAT attack to find an approximate key that unlocks
most netlist functionality. While the AppSAT attack weakens
the effectiveness of obfuscation over the un-attacked netlist, it
does not fully unlock the circuit into a zero-error state.

The persistence of module-level error leads to a central
question: are these module-level errors sufficient to pro-
vide application-level security? We approach this question
by leveraging the GEMS5 [11] simulator to perform system-

level simulations of PARSEC [16] benchmarks on the locked
netlist. We aggregate the architectural simulation results to
estimate the likelihood of encountering an unrecoverable error
after a certain number of AppSAT attack iterations. We have
displayed the results for the highest error case, the SFLL
locked M68000 ALU netlist, in Figure 1. The remaining
results have been omitted for brevity.

By utilizing approximately correct keys from the AppSAT
attack, we achieved 0% benchmark error rates within 48
AppSAT iterations in all cases. Despite module-level error
remaining in the circuit, the approximate key yielded a pi-
ratable IC capable of running useful workloads, the adver-
sary’s primary goal. By successfully attacking each of these
netlists, obfuscated in 3 locations using state-of-the-art logic
obfuscation techniques, we show that combinational locking as
proposed is limited in preventing processor piracy in practice.

D. Limitations of Combinational Obfuscation

These successful attacks demonstrate the limitations of com-
binational logic obfuscation: high module-level corruptibility,
while effective at denying application-level functionality, leads
to increased SAT susceptibility. We attempt to quantify this
trade-space using system-level simulations by varying the
module-level error rate remaining in the locked processor to
determine the application-level failure rate of the PARSEC
benchmark suite. We then related the module-level error rate
to the required number of DIs and therefore SAT iterations
necessary to locate the correct key. This transformation allows
us to directly relate the application-level error rate to the SAT
susceptibility of state-of-the-art locking techniques.

From Figure 2, notice that while application-level errors
begin to occur around a SAT susceptibility of 2'2, significant
application-level error rates regardless of workload, are not
achieved by module-level locking until between 2° and 26
DIs must be found to successfully SAT attack the circuit. 64 to
512 SAT iterations to locate the correct key is a quite feasible
complexity and would lead to successful SAT termination in
all but the largest combinational modules. For context, the
SAT resistant 64-bit SFLL configuration used to secure the
processor IC in [1] would require 263 SAT iterations to locate
the correct key on average. The massive difference between the
SAT susceptibility required for application-level errors and the
SAT susceptibility present in SAT resistant circuitry highlights
that module-level locking as proposed is inherently unable to
provide both SAT resistance and application-level errors.

Based on the results in this section, we argue that the trade-
off between SAT susceptibility and application-level error
rate is a real one. Additionally, in the specific trade-space
characterized by Figure 2, there does not exist a configuration
which guarantees the IC designer both SAT resistance and
application-level security using current state-of-the-art combi-
national locking techniques. In order to provide piracy pro-
tections for processor ICs, we believe these results highlight
that as a community, we must explore methodologies beyond
conventional combinational logic obfuscation techniques.

III. MEMORY LOCKING

To remedy the issues underlying combinational obfuscation
presented in the previous section, we propose memory locking,
a logic obfuscation technique focused on denying on-chip
SRAM functionality to the adversary. The SRAM circuit is
targeted for 3 reasons. 1) SRAM circuitry dominates processor

Fig. 3: Memory locked SRAM cell.

area and is involved in most processor functionality. This
provides flexibility in obfuscatable location and functionality.
2) SRAM contains a delicate analog/timing balance. This leads
to discrete-domain attack resilience and easily induced errors.
3) SRAM arrays are generated with design automation which
can be leveraged to incorporate memory locking.

More specifically, memory locking is the insertion of tun-
able delay buffers (TDB), contained in the box in Figure 3,
within buffer step-up chains of the bit-lines and word-lines
of on-chip SRAM arrays. These TDBs enable the key-driven
modification of the parasitic capacitance on these lines thereby
altering the analog signature (drive strength, power leakage,
timing, etc.) of any attached SRAM cells.

Throughout the remainder of this work, we will rely on an
abstraction called the ¢ value of an SRAM cell, which charac-
terizes the current state of analog parameters a cell is operating
in. We use this because an SRAM cell is designed for multiple
interrelated parameters including relative word/bit-line timing,
power leakage, cell sizing, drive strength, and cycle timing.
The raw values of each of these variables are irrelevant as
memory locking relies primarily on the divergence of these
variables from the values the SRAM cell was designed for.
Fundamentally, memory locks act to upset the SRAM cell state
from the unique designed for state, ¢correct, t0 an non-unique
incorrect state, @;ncorrect, When improperly keyed.

A. Memory Locking Example

A basic example of a memory locked circuit is contained
in Figure 3. First, we focus on the functionality of the labeled
TDB circuit, T1-T3, located on the bit-line of Figure 3. When
a1’ is applied as keyO to the pass transistors (T1 and T2), a
parasitic capacitance is created through the gate/source-drain
of T3 and added to the bit-line. Applying '0’ as keyO would
not connect the parasitic capacitance (T3) to the circuit. At a
fundamental level, by modifying the key, memory locking acts
to modify parasitics on the bit/word-line. This added parasitic
alters the bit/word-line drive-strength, leakage, timing, and
other analog parameters. Utilizing this, when a correct key is
applied to the IC, the signal modifications created by memory
locks induce a designed for state. In an improperly keyed IC,
an unintended parasitic is introduced which upsets the analog
equilibrium of the SRAM array and induces errors.

Now, let us assume the memory locked SRAM circuit
displayed in Figure 3 was designed to have a correct key value
of ’10. If an untrusted foundry were to fabricate this circuit
and incorrectly apply the key *11,” both a write error and read
error state would be induced. In the case of a write, no value
would be stored in the SRAM cell because the pass transistor

(M6) is no longer able to overpower the value held in the
SRAM cell inverter (M3 and M4) due to the increased bit-line
capacitance. Note that this error is due to the drive-strength of
the bit-line rather than bit-line timing. While relaxing timing
might help to alleviate this error, a sufficiently large TDB
would restrict the bit-line charge from ever overpowering the
SRAM cell, inducing an error regardless of timing. In the
case of a read, a read error would occur as the SRAM cell
would be unable to pull the bit-lines apart rapidly enough
to ensure accurate sense amplifier functionality, once again
due to the increased capacitance. Again, as is the case for
a write, a sufficiently large TDB would yield a bit-line too
capacitive to be overpowered by the SRAM cell, inducing an
error regardless of timing. Each alternate wrong key results in
similar analog and timing issues within the locked cell.

B. Relationship to Prior Work

Notice that memory locking relies on similar structures
to delay locking [6], but utilizes them differently. TDBs are
utilized in memory locking to modify the analog signature
of an SRAM array (i.e. power leakage, drive strength, etc.)
rather than to create timing violations within combinational
paths as was the case in [6]. Memory locking targets bit/word-
lines because these lines must have sufficient drive strength to
deliver power to overwrite internal SRAM transistors on a
write, but also capable of being overpowered by these same
transistors on a read for accurate functionality. By modifying
analog parameters with TDBs and SRAM ¢ values, memory
locking creates security through inducing a challenging analog
design problem with many interdependent variables rather than
the combinational timing focus of [6].

C. Locking Large Scale SRAM Arrays

As we scale memory locking, a security limitation presents
itself. Assuming the SRAM array was symmetric, the ¢ value
for every cell is identical and therefore each SRAM cell
will have the same correct key. An adversary could reverse-
engineer the correct key for one cell and replicate this key
for all other cells, unlocking the whole SRAM array. This is
due to lack of diversity in ¢ values. Because of this simple
intuition and the symmetry of SRAM arrays, memory locking
as described would be limited in key-space and security.

We can create diversity through ensuring multiple unique
Ocorrect Values throughout the SRAM array. By placing non-
keyed parasitics within SRAM cells through small, but random
deviations in cell parameters, the designer can create unique
dcorrect values for each cell (or set of cells). Each of these
Pcorrect Values have a unique correct key which should be
at least 1 bit, but could be longer. As we linearly increase
the number of unique ¢ orrect Values, the attacker will face
an exponential increase in the searchable key-space, therefore
an exponential increase in the required reverse engineering
effort. Finding the correct key for a cell in isolation does not
guarantee a solution for cells with alternate ¢.o;rect values.

By designing for multiple @.orrect Values throughout the
array, the adversary is forced to redesign the SRAM array in
its entirety in the process of solving for the correct key. This is
unrealistic given that 50-90% of the transistor count on modern
CPUs is devoted to SRAM circuitry [10]. In Figure 4 we show
the topology of a memory locked SRAM array containing a
unique @eorrect vValue for each SRAM cell.

KeyJ_ Keyﬂ_

g

Key1

]
T

Fig. 4: 100% unique ¢ value memory locked 3x3 SRAM.

D. Memory Locking Implementation

Memory layout is generally performed with an SRAM
compiler. These tools strive to lessen the time required to
layout the large area of SRAM cells that span modern ICs. We
propose a methodology for the design automation of a memory
locked SRAM array leveraging the feature set of openRAM
[17], an open-source SRAM compiler. Despite our focus on
openRAM, nearly every modern SRAM compiler shares the
functionality necessary to implement this methodology.

To automate a memory locked layout, two additional custom
blocks, a TDB and a parasitic capacitance with parameteriz-
able sizing, must be included in the SRAM compiler. First, the
IC designer would tile an array of SRAM cells for a specific
architectural block (i.e. register file). Depending on the level
of security desired, a certain set of unique ¢ values are chosen.
These values are distributed randomly across the SRAM cells.
Based on the ¢ value, each cell is redesigned to include a
certain internal parasitic capacitance.

Following array layout, TDBs are added on bit/word-lines
utilizing the compiler’s timing analysis tool to size these locks.
Note that each unique ¢ value corresponds to a unique memory
locking formulation and requires at least 1 key bit. The total
number of key-bits corresponds to the total number of unique
¢ values in the SRAM array. Following said modifications,
the IC designer proceeds with a standard design flow, adding
peripheral circuitry as required. This automated methodology
yields a memory locked SRAM with a given key.

Leveraging the proposed methodology, we designed a 6x6
SRAM array to explore the effects of memory locking
in a slightly larger circuit. This array was designed using
FreePDK15 [18], an open-source, 15nm, predictive-process
library and simulated using HSpice. With these tools, we were
able to design a 15nm SRAM cell, tile it into a memory locked
6x6 array, and add peripheral circuitry to the array. By cycling
the inputs to our decoder, we were able to simulate memory
traffic with accurate timing and control signals.

By sweeping over the percentage of unique ¢ values present
in the array, we are able to quantify the timing overhead of
memory locking. Because SRAM cycle time is dictated by the
capacitance of the circuit, increases in unique ¢ values cause
a degradation of the minimum cycle time of the array. We
quantified the relationship between unique ¢ values and circuit
timing degradation in Figure 5. Note that a linear increase in

1.1

1.04 —e— Timing Overhead

Norm. Overhead

0 20 40 60 80 100
Percent of SRAM Cells with Unique ¢ Values
Fig. 5: Memory locking security/timing overhead trade-off.

the percent of unique ¢ values yields a linear increase in timing
overhead while exponentially increasing key-space.

E. Security Analysis of Memory Locking

Tool-Driven Approach: The automated nature of memory lock-
ing might drive concerns of an adversary using similar tools to
determine the correct key for a memory locked SRAM. While
the attacker has access to circuit details, they would need to
perform detailed row/column simulations for any SRAM cell
with a unique ¢ value and a memory lock on an associated
bit/word-line. For each cell, the attacker must apply a key
to the array and then read/write both a ’1’ and a ’0’ at each
locked cell to verify it. To verify that a read stability error does
not occur, the attacker must perform two consecutive reads for
each word-line while storing both a ’1’ and a ’0’. To verify the
write capability from any state, the adversary must write each
cell from ’1’ to ’0” and *0’ to ’1’. This process would require 9
read/write operations and hence 9 clock cycles in the best-case
to achieve. This series of read/writes must take place for each
locked cell in the SRAM array for each key guess. This implies
that unlocking a register file, one of the smallest on-chip
SRAM arrays, with a 64-bit key, corresponding to 64 memory
locks with unique ¢ values, and 64, 64-bit registers would
require over 6.8 x 1023 cycles to unlock. This is unrealistic.
SAT Based Approach: SAT-based formulations, including those
which target timing based locking, such as TimingSAT [9], do
not apply to memory locking. This is due to the feedback
loop and internal state present in each SRAM cell. This
feedback loop leads to a recursive and thus unresolvable SAT
formulation. We direct the reader to Lemma 1 from [19] which
states that if a feedback loop in a circuit is stateful, SAT attack
will enter an infinite loop. Given that memory is inherently
stateful, memory locking becomes SAT-unresolvable.
Removal Attack: In this case, we assume the adversary has
removed all TDBs from SRAM circuitry. This creates a non-
functional circuit as the SRAM array was designed to function
given only the correct key configuration which includes added
parasitic capacitance from the memory locks.

Redesign Based Attacks: One can argue that locked, on-chip
SRAM arrays could be selected from the layout and replaced
by an unlocked SRAM array of the same size. However, such
an attack is also unrealistic. The primary concern is that 50-
90% of transistor count within modern processors is involved
in SRAM circuitry [10]. Even with the help of SRAM automa-
tion tools, searching through, removing, and then redesigning
this portion of IC transistor count is a massive undertaking.
On-chip memory is distributed in several smaller modules
such as pipeline registers, register files, branch predictors, etc.
A complete “find and replace” of all these locked modules
with unlocked modules while matching the timing, area,
etc. characteristics is quite a challenging endeavor. We also
emphasize that conventional locking approaches are subject
to such “find and replace” attacks as the functionality of

B No Lock
Cache Tag ° 115
B Data Cache o g
B Float RF &g 110
I Float RF & Cache Tag g 5 1.054
U Float RF & Data Cache 5 @ 1.05 1.0281.030 1.0201.0321.03
Data Cache & Cache Tag2 €
B Integer RF & Any Pair = 1.00
SFLL

Fig. 6: Average obfuscation timing overhead on 8086 core running PARSEC.

targeted combinational modules, such as an adder, multiplier,
instruction decoder, etc., is generally known.

IV. ARCHITECTURAL OBFUSCATION AND RESULTS
A. Simulator Overview

For this work, we leveraged the GEMS simulator [11]
to close the loop between module-level obfuscation and its
application-level impact. To do so, we incorporated various
locking techniques within an 8086 processor netlist. A fault
analysis of the netlist was performed for a given key and the
errant minterms remaining in the circuit were incorporated into
the GEMS5 simulator model of the core. Workloads could then
be run on the GEMS model of the locked netlist to evaluate
the application-level impact of module-level locking.

We configured our simulator to mimic a logically obfuscated
8086 core running a Linux operating system. We performed
our architectural benchmarking using benchmarks from the
PARSEC benchmark suite [16] and aggregated the results of
40 monte-carlo simulation runs of each benchmark and pro-
cessor configuration to quantify the impact logic obfuscation
had on timing overhead, error rate, and error severity. We
define error severity as the number of operations successfully
executed until an unrecoverable error occurs in the processor,
indicating the amount of work completed before obfuscation
related errors derail the core. We define error rate as the
percent of benchmark runs which do not complete successfully
due to errors injected from logic obfuscation.

B. Simulation Results

We have investigated the architectural impact of both state-
of-the-art combinational locking and memory locking. In this
section, we present the simulation results derived using the
methodology laid out in Section IV-A. For space, we only
include results for the optimal configuration of each technique
in Figures 1 and 7. In our consideration of memory locking, we
target on-chip memory modules used for the integer register
file, floating point register file, data cache tag, and data cache
data field. We model memory locking using randomly selected
keys of various lengths at each of these locations. We initially
consider memory locking in a single location.

Stand Alone Memory Locking: Based on simulation results
for each memory locking location, locking the data cache tag
performed optimally. As seen in Figure 7, any key length
greater than 32-bits yielded 100% application-level error rates
for each workload within the first 100 operations executed.
This implies that minimal useful work could be performed.
Compare this to the performance of conventional logic obfus-
cation in Figure 1 where 0% application-level error rates were
recorded after a SAT-based attack despite 3 locking locations.

In addition to the application-level security of memory lock-
ing, the incurred timing overhead was also much lower than
the SFLL locked processor as shown in Figure 6. For brevity,

_ Cache Tag and Floating Point RF Cache Tag and Floating Point RF
IS Cache Tag Memory Locking Memory Locking = Cache Tag Memory Locking Memory Locking
o 6
& 100 4 — 100 & 0
> / .
<] 3 > i 10° o
g 751 / 8 150 4
5 % / 80 £ 10% 4
£ 507 2 100 - 103 4
= €
£ 254 60 - < 102 4
o< T T T T T T T T T T T T T T S— T T T T T T T T T T T T T T
X 2 4 8 32 64 128256 2 4 16 32 64 128256 2 4 8 32 64 128256 2 4 16 32 64 128256
Obfuscation Key Length Obfuscation Key Length Obfuscation Key Length Obfuscation Key Length
—— blackscholes bodytrack dedup ferret —#&— fluidanimate freqgmine —%- streamcluster swaptions —— x264

Fig. 7: Error rate and severity results for optimal memory locking configurations of 8086 core running PARSEC suite.

we have only shown results for 100% unique ¢ value memory
locking, the worst case timing overhead. These significantly
reduced overheads are due to the inclusion latency hiding
techniques (i.e. out-of-order processing, cache-banking, etc.)
within the IC. These techniques, architected to hide memory
latency, were able to amortize the 14.1% latency overhead
from memory locking for all locations except integer register
file locking. This is unsurprising as the integer register file
latency dictates the cycle time of this processor; therefore, no
overhead could be amortized. Data cache tag memory locking
exhibited only a 2.8% runtime overhead compared to the 5.4%
overhead reported by SFLL, a significant improvement.
Paired Location Memory Locking: We performed pairwise
simulations of all combinations of 2 memory locking locations
with an equal key distribution to investigate the effect of
locking diversity on application-level security. We found the
optimal pairwise configuration to be cache tag and floating
point register file memory locking. Multiple locking locations
as a whole appear to perform better than their single location
counterpart. This is likely due to the diversity in processor
functionality locked, thereby inducing more diversity in er-
rors. When considering the optimal stand alone and pairwise
memory locking configuration, as shown in Figure 7, the
benefit of diversity seems reduced. Cache tag and floating
point register file locking with a 128-bit key caused 100%
of workloads to encounter an unrecoverable error within the
first 100 operations. This performance is similar to stand
alone cache tag locking; however, notice that the pairwise
application-level error rate is higher regardless of key length.
When considering the amortized timing overhead in Figure 5,
the optimal pairwise and stand alone memory locking con-
figurations perform similarly, with paired locking exhibiting a
2.9% overhead compared to the 2.8% overhead of stand alone
data cache tag locking. As before, memory locking appears to
significantly outperform SFLL regardless of configuration.
Combinational Obfuscation: In Section II, we used SFLL
[1] and Anti-SAT [7] to lock both a M68000 and MIPS
netlist in 3 locations using the methodologies proposed by the
authors. We demonstrated a successful attack methodology to
unlock the control path circuitry and an approximate attack to
partially unlock the data path circuitry. Even with module-level
error remaining in the data path circuitry, simulation results
demonstrated a 0% application-level error rate after attack in
all 4 cases, as seen in Figure 1.

V. CONCLUSION

In this work, we demonstrated the limitations of combi-
national, module-level logic obfuscation techniques for pro-
cessor design obfuscation. In response to these limitations,
we have proposed a logic obfuscation technique to obfuscate
SRAM circuitry, called memory locking, and a corresponding

automated implementation methodology. Using system-level
simulations, we evaluated memory locking and state-of-the-
art combinational logic obfuscation at the architecture-level.
Based on our results for the simulated architecture, we found
64-bit cache tag/64-bit floating point register file combined
memory locking, or 128-bit cache tag memory locking to per-
form optimally. However, other architectures and techniques
may result in different optimal configurations.

VI. ACKNOWLEDGEMENTS

This work was supported by a joint University of Maryland
and Northrop Grumman Corporation seedling grant along
with the Air Force Office of Scientific Research under grant
FA9550-14-1-0351.

REFERENCES

M. Yasin et al., “Provably-secure logic locking: From theory to
practice,” in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, ACM, 2017, pp. 1601-1618.
S. S. Technology. (2012). Why node shrinks are no longer offsetting
equipment costs, [Online]. Available: http://electroiq.com/blog/2012/
10/why-node-shrinks-are-no-longer-offsetting-equipment-costs/.

M. Rostami et al., “A primer on hardware security: Models, methods,
and metrics,” Proceedings of the IEEE, pp. 1283-1295, 2014.

P. Subramanyan et al., “Evaluating the security of logic encryption
algorithms,” in 2015 Hardware Oriented Security and Trust (HOST),
IEEE, 2015, pp. 137-143.

K. Shamsi et al., “Appsat: Approximately deobfuscating integrated
circuits,” in Hardware Oriented Security and Trust (HOST), 1EEE,
2017, pp. 95-100.

Y. Xie et al., “Delay locking: Security enhancement of logic locking
against ic counterfeiting and overproduction,” in Proceedings of the
54th Annual Design Automation Conference, ACM, 2017, p. 9.

, “Mitigating sat attack on logic locking,” in Conference on
Cryptographic Hardware and Embedded Systems, 2016, pp. 127-146.
M. Yasin et al., “Sarlock: Sat attack resistant logic locking,” in Hard-
ware Oriented Security and Trust (HOST), IEEE, 2016, pp. 236-241.
A. Chakraborty et al., “Timingsat: Timing profile embedded sat attack,”
in International Conference on Computer-Aided Design, 2018, 6:1-6:6.
J. Rabaey, Low power design essentials. Springer Science & Business,
2009.

N. Binkert et al., “The gem5 simulator,” ACM SIGARCH Computer
Architecture News, vol. 39, no. 2, pp. 1-7, 2011.

X. Li et al., “Application-level correctness and its impact on fault
tolerance,” in High Performance Computer Architecture, 2007.

A. Chakraborty et al. er al., “Gpu obfuscation: Attack and defense
strategies,” in Design Automation Conference, ACM, 2018.

J. Rajendran et al., “Fault analysis-based logic encryption,” IEEE
Transactions on computers, vol. 64, no. 2, pp. 410-424, 2015.

K. Asanovi¢ et al., “Instruction sets should be free: The case for risc-v,”
University of California, Berkeley, Tech. Rep. UCB/EECS-2014-146,
2014.

C. Bienia et al., “The parsec benchmark suite: Characterization and
architectural implications,” in international conference on Parallel
architectures and compilation techniques, ACM, 2008, pp. 72-81.

M. R. Guthaus et al., “Openram: An open-source memory compiler,”
in International Conference on Computer-Aided Design, 2016.

K. Bhanushali et al., “Freepdk15: An open-source predictive process
design kit for 15nm finfet technology,” in International Symposium on
Physical Design, ACM, 2015, pp. 165-170.

H. Zhou et al., “Cycsat: Sat-based attack on cyclic logic encryptions,”
in International Conference Computer-Aided Design, 2017, pp. 49-56.

[1]

[2]

[3]
[4]

[5]

[6]

[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]

[16]

[17]
[18]

[19]

