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Heterogeneous computing systems have become common in modern processor 

architectures. These systems, such as those released by AMD, Intel, and Nvidia, 

include both CPU and GPU cores on a single die available with reduced 

communication overhead compared to their discrete predecessors. Currently, discrete 

CPU/GPU systems are limited, requiring larger, regular, highly-parallel workloads to 

overcome the communication costs of the system. Without the traditional 

communication delay assumed between GPUs and CPUs, we believe non-traditional 

workloads could be targeted for GPU execution. Specifically, this thesis focuses on 

the execution model of nested parallel workloads on heterogeneous systems. We have 

designed a simulation flow which utilizes widely used CPU and GPU simulators to 

model heterogeneous computing architectures. We then applied this simulator to non-

traditional GPU workloads using different execution models. We also have proposed 

a new execution model for nested parallelism allowing users to exploit these 

heterogeneous systems to reduce execution time. 
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Introduction 

 In the multicore world we currently live in, researchers constantly develop 

new ways to parallelize tasks being executed. Novel ways of finding and exploiting 

different types of parallelism inherent in the problems we solve is one of the cheapest 

and easiest ways to achieve runtime speedup. This can be seen by the amount of 

research into programming languages and APIs that help programmers identify and 

exploit parallelism [6, 23]. Nested parallel constructs are the focus of this research as 

they are one of the easiest code constructs to parallelize due to its identifiable parallel 

structure.  

 Intel and AMD have both begun releasing heterogeneous chips, and are 

proposing further heterogeneous designs [5, 19]. By introducing both SIMT and CPU 

cores on the same die, communication times are reduced over the discrete CPU/GPU 

designs relying on a communication bus to transfer data [5, 19]. Traditionally, the 

communication between the CPU and GPU has limited the types of workloads that 

could be forwarded to those with enough work and regularity to offset the base data 

transfer cost [21]. We believe current execution models are outdated on 

heterogeneous architectures. In this paper we explore novel execution models to 

exploit nested parallelism in a heterogeneous system where the communication time 

between a CPU and a GPU is reduced. 

 



2 

 

What is Nested Parallelism? 

 The basis of this investigation is nested parallel coding constructs. This term 

is often loosely defined, so for the sake of clarity we will give our definition of a 

nested parallel coding construct. The most basic example of a code region exhibiting 

nested parallelism is shown in the figure below. 

 

Figure 1 Nested Parallel Code Region 

 Often times, these loops have significant GPU-friendly parallelism and can be 

sped up by offloading the inner loop to SIMT cores from a single CPU thread. This 

method performs well with large, regular loops in which the inner, GPU-targeted 

region contains the majority of the work, but as always, there are exceptions to the 

rule.  

 In loops, such as the one shown below, the above described execution model 

will under-perform because these smaller loops may not fully utilize SIMT cores. The 

computations between GPU regions may also be significant in terms of runtime, 

which limits the GPU’s performance due to Amdahl’s Law. 
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Figure 2 More Complex Nested Parallel Region 

 

 Examples of Nested Parallelism 

 Although the nested parallelism code sample we showed is quite simple, it 

does not have to be. Many widely used benchmarks display divergent control flow, 

loop break conditions, and other unpredictable code constructs within the nested 

parallelism. Some of this complexity is shown in the loops displayed below. 

 
Figure 3  Examples of Nested Parallel Code Constructs Selected From MD, FFT6, and ART 
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   The loops in the figure all display nested parallel constructs, but they also 

represent a more complex subset of nested parallelism. Specifically, these loops 

contain more complex outer loops, with simpler inner loops. These outer loops are 

either low iteration or unpredictable. For example, in ART the while(!matched) 

statement in the outer loop creates an indeterminate length loop making it 

unpredictable. The low iteration count and irregular control flow makes these outer 

loops a more coarse-grain of parallelism. Traditionally and as implemented in the 

benchmark suite, this coarse-grain parallelism is more attractive for parallel CPU 

execution. Upon inspection of the inner loops for ART, many, but not all of them are 

computational, stepping or striding through an array to perform the same computation 

many times with a large iteration count. These regular, often array-based 

computations make these inner-loops attractive to a GPU, however three of these 

inner-loops also exhibit control flow divergence and contain little work, therefore in a 

discrete system, these loops would under-perform on a SIMT core. With the 

communication overhead in current GPU systems often in the tens to hundreds of 

microseconds [8], it does not provide any speed-up to offload loops of this nature. 

With the surging of heterogeneous architectures, GPU cores and CPU cores have 

been brought closer together and given us the ability to more rapidly forward work 

between cores. This makes smaller, less-traditional workloads such as those shown 

above more attractive for offloading.  

 It is the dichotomy present in these inner and outer loops, with the outer loops 

displaying a coarser, more CPU targeted parallelism, and the inner loops displaying a 

finer grain, more GPU target parallelism that we are targeting in this study. For the 
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remainder of this paper we will call these types of nested parallel loops “multigrain 

parallel code constructs” to highlight the difference between the coarse-grain outer 

loop and the fine-grain inner loop. We believe that with the advent of heterogeneous 

architectures the execution model of these loops warrants another look. 

Taking a Deeper Look at Multigrain Parallelism 

We have compiled OpenMP regions from three benchmarks we have 

reviewed to discuss the characteristics of multigrain parallelism in more detail. See 

the figure below for the code [3, 25].  

 
Figure 4 Nested Parallel Code Constructs from CG, Equake, and ART 

 Before taking a deeper look, one can note, that even though all these 

constructs are nested, they are very different. The prime similarity between these code 

samples is that they all include some sort of array type calculation in the inner loop, 

although that statement is nearly ubiquitous with programming and code in general. 

 Starting with CG, notice that the code has two OpenMP regions, one nested, 

and one non-nested region. The non-nested parallel loop is a simple calculation and 
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stored into an array. It appears regular and the size of the loop is predictable as lastcol 

and firstcol do not change mid-loop. The nested OpenMP region is several sparse 

matrix reductions which are then stored in an array. This first loop, while not nested 

is very regular and predictable in behavior. There is not a significant amount of work 

in this loop so traditionally it would not be targeted for SIMT cores. The second loop 

is nested in nature and has an irregular structure due to the varying size of the inner 

loop. 

 Equake displays a very dissimilar type of nested parallelism compared to CG. 

In Equake, the inner loops do not contain enough work to overcome the overhead of 

communication regardless of the heterogeneity of the architecture. The outer loop 

contains more work in it, but at the expense of control flow divergence introduced by 

the “if” statements. Visual inspection does not provide an obvious mapping of this 

code to either a GPU or a CPU due to the irregularity, problem size, and divergence. 

The loop appears to have control flow divergence due to the two if statements which 

if so, would make the loops poor targets for GPU execution. 

 The final example of multigrain parallelism we have selected is that of ART. 

In ART, there is a divergent and low iteration outer loop that clearly does not target 

the GPU well. We would propose executing this divergent outer parallelism using 

multiple CPU cores if we were to parallelize. The inner loops; however, might target 

well to the GPU, but not all of them do. Each of these loops has varying degrees of 

divergence, work, and irregularity that influence how well they can be executed by 

the GPU.  
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 There is a fair amount of diversity between the three loops chosen for deeper 

inspection. An optimal execution model would need to select only multigrain parallel 

loops from non-multigrain parallel loops and also be able to efficiently execute these 

loops. 

Prevalence of Multigrain Parallelism 
 

 Nested parallelism has been extensively studied as an easy source of speedup 

in the multicore era [7, 12, 18]. The primary draw here is the easily recognizable and 

parallelizable nature of the regions. The code, already in the proper ISA, can then be 

forwarded, generally with very few hazards, to other cores to share work and get 

execution-time speedups. When transferring this idea to heterogeneous computing 

and to the specific type of nested parallelism we are targeting, there are four primary 

difficulties introduced: 

1. The GPU and CPU have an introduced communication delay. 

2. CPU’s and GPU’s use different ISAs.  

3. Divergent and irregular loops do not target well to GPUs. Often these loop 

characteristics must be identified at runtime. 

4. Loops must have a parallel outer loop with an independent inner loop. 

These four factors make forwarding these loops to the GPU less attractive. 

Recently however, heterogeneous architectures are reducing the concerns brought up 

by point one. Many developments have also been made recently in compiling CPU 

targeted parallel code, for example OpenMP to CUDA [23]. These breakthroughs 

reduce the barrier that point two once imposed. This leaves points three and four that 

must be addressed before applying heterogeneous processing to these loops. In hopes 
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of shedding some insight on points three and four, a code study was completed to 

help classify code that is multigrain parallel. 

Is Multigrain Parallelism Prevalent? 

 To answer this question, we first identified the types of loops that could be 

targeted to a GPU without taking account of the actual performance of these loops. 

More specifically, we hoped to find nested loops that followed the spirit of our model 

of multigrain parallelism in which the: 

1. Outer loop must be parallelizable 

2. Inner loop must be parallelizable 

3. Inner loop must be of fixed/predictable size 

The idea was to determine the prevalence of multigrain parallel code constructs 

with the intention of determining loop performance and optimum execution heuristics 

later. For multigrain parallelism to be worth being exploited using heterogeneous 

architectures, it must be both common enough in code and contain significant work to 

allow for sizeable execution time improvements. We studied the NAS benchmark 

suite for this code study. The NAS benchmark suite is “a small set of programs 

designed to help evaluate the performance of parallel supercomputers.” [3]. The suite 

contains five kernel benchmarks and three pseudo application benchmarks. The hope 

of the benchmark is to represent common – variable size workloads that parallel 

supercomputers might see. The kernels tended to be scientific in nature. 

 To profile the NAS suite, we stepped through, line by line, the functions that 

took over 1% of runtime according to gprof. We then categorized code in these 

functions into “contains multigrain parallelism” or “does not contain multigrain 
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parallelism” categories, and tallied up the percent of execution containing multigrain 

parallelism with functional granularity. 

Results of NAS Code Review 

 We determined that of the almost 99% of NAS execution time surveyed, 

59.3% of the functions contained nested parallel constructs. 

 

Figure 5 NAS Code Review Results Aggregate 

 This implies that by exploiting multigrain parallelism, 60% of the runtime of 

suite runtime could be affected in the best case. Realistically, there is work other than 

the multigrain constructs in these regions, but with 60% of the functions containing 

multigrain parallelism and many containing nothing else, there appears to be 

significant opportunity for execution time reduction. 
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 Continuing to break down these results, you can see that multigrain 

parallelism tends to be an all or nothing phenomenon. Most of the benchmarks 

exhibited a great deal of multigrain parallelism (with respect to runtime), or none at 

all. There was very little middle ground. From further inspection, it was the 

benchmarks that included matrix computation, such as dot products, which contained 

multigrain parallelism. Below, the benchmark specific results for the study are posted. 

 

Figure 6 NAS Code Review Results by Benchmark 

 With nearly 60% of NAS functions containing multigrain parallelism, the 

exploitation of this parallelism could open the door to a significant speedup. 

Results of LULESH Code Review 

 After gathering the results of the NAS code review, we gathered results from a 

full software application as opposed to the computational kernels that NAS offers. 

NAS consists primarily of micro-kernel benchmarks, which while representing real 

parallel workloads, do not tend to represent the complexity in most useful scientific 
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applications. These NAS benchmarks aim to simply gather common compute loops 

that dominate scientific codes, instead of solving an end to end scientific problem that 

may include, but not be dominated by, these compute loops. 

 To get a better idea of a real world application, we performed the same code 

review as performed on NAS on the LULESH benchmark, which is one of the five 

challenge problems in the DARPA UHPC program. Specifically, LULESH is the 

shock hydrodynamics challenge problem. This code has been widely studied, and 

represents a more irregular and holistic type of scientific code than the NAS suite. 

The results of the code review are shown below. 

 

Figure 7 LULESH Code Review Results 

 The overall code reviewed is below 100% due to the large number of less than 

1% execution time functions. These functions were ignored due the minor effect on 

overall runtime. If the remainder of the code exhibited multigrain parallelism at the 
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same rate as the reviewed portion, roughly 40% of the code would be multigrain. 

Upon reviewing the code, this can largely be attributed to the significant amount of 

data setup, aggregation, and preparation loops contained in LULESH. These setup 

portions were ignored in the micro-kernels of NAS which omitted everything except 

the computational loops.  

Analysis of Results 

 From the code study, it appears that nested parallelism is present in fairly 

significant amounts in scientific parallel codes. Although the 59.3% of execution time 

governed by functions containing multigrain parallelism in NAS is most likely higher 

than that present in common commercial and academic applications, we argue that as 

a fairly generous estimate, it is more likely that the rate lies somewhere around the 

30-40% line exhibited in LULESH. If 30-40% of code execution time is affected by 

multigrain parallelism, exploiting these multigrain loops could lead to a sizeable 

speedup in overall code runtime. 

Multigrain Parallel Execution Models 
 To begin, we broke down all possible ways to handle a nested parallel 

construct. 

1. Execute entirely on the CPU serially 

2. Execute entirely on the GPU 

3. Execute outer portion serially on CPU, and forward inner portion to GPU 

4. Execute outer portion in parallel on CPU, forward inner portion to GPU 

5. Execute outer portion in parallel on the CPU. Each thread serially executes 

inner portion on the CPU 
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The focus of this research on heterogeneous architectures makes options 2, 3, 

and 4 the only models that could exhibit speedup from the benefits of heterogeneity. 

Execution model 2 opts for entirely GPU execution of both inner and outer loop. This 

generally would not be favorable due to the coarse nature of the outer loop in 

multigrain parallelism. Due to the outer loops being poorly targeted for GPU 

execution, we will ignore this model. Execution model 1 is CPU-only and not 

parallel. In general, it provides the most basic model from which baseline execution 

times can be measured. Execution model 5 creates a parallel CPU execution, ignoring 

the GPU entirely. This model is the de facto standard execution model we have found 

in benchmarks such as SPEC 2001 OpenMP. Because this model receives no benefit 

from having a low communication overhead GPU, we will use execution model 5 

execution time as the second baseline to compare execution models 3 and 4. 

Therefore, to summarize, the execution models of interest are models 3 and 4 which 

will be compared to execution models 1 and 5 as baselines. 

We have dubbed option 3 “Dual Parallelism” due to the coarser grain outer 

loop which runs on the CPU in parallel, and the finer grain inner loop which runs on 

the GPU in parallel. Dual parallelism focuses on exploiting the strength of CPUs in 

the execution of large coarse chunks of code that can be irregular, divergent, and 

unpredictable, while using the GPU which executes regular computational code very 

effectively. 

We have dubbed option 2 “Mono Parallelism.” Option 2 would require a very 

regular, high iteration outer loop that also contains a very regular inner loop that runs 

similarly from iteration to iteration of the outer loop. These types of loops would 
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offer the GPU more work than only forwarding the inner loop as option 3 does, but 

require a more constrained loop to run effectively. Both of these options benefit 

significantly from the reduced communication delay heterogeneous architectures 

provide. 

Proposed Multigrain Execution Models 

Now we will take an in depth look at execution models two and three with 

respect to ART. The region of interest in ART is pictured again below. 

 

Figure 8 Multigrain Region from ART 

There are two ways to handle executing the parallel loops of the type found in 

ART. The first execution model we dubbed mono parallelism where a single CPU 

forks the entire inner loop. This is the standard execution model of parallel systems 

involving a GPU. To execute the pictured loop in a mono parallel fashion, a single 

CPU core would fork all inner loop work to a SIMT core until all processing is 
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complete. At this point the GPU would return and the CPU would resume execution. 

This is shown in the figure below on the left side. Point one represents the start of the 

inner loop where data is forked to a SIMT core. The inner loop is then executed on 

the GPU until completion where the CPU resumes. 

The second execution model of interest is dual parallelism. For ART, this 

would consist of a parallel CPU forking the inner loops as they were reached. It is 

displayed on the right side in the figure below. On reaching the outer loop, point 2 in 

the figure, multiple CPU threads are spawned. As these threads reach the inner loop 

work, point 3 in the figure, threads are forked to a SIMT core. When this work is 

completed the CPU resumes execution. This execution model has SIMT cores service 

multiple CPUs simultaneously. 

 
Figure 9 Execution Models of Multigrain Parallel Code Constructs. (Mono-Parallelism on Left, Dual-Parallelism 

on Right) 

The dual model allows both CPU and GPU parallelism to be utilized, but 

comes with the risk of overloading the GPU. The multigrain scenario carries some 

risk in overloading the GPU, which would cause CPU threads to hang while earlier 
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workloads are pushed through the GPU. In this scenario, the overall execution time 

would be bottlenecked by the GPU, and would be much greater than execution time 

under single-grain parallel execution model. With smaller, less divergent workloads, 

the multigrain loop has a greater potential for speedup, where many different parallel 

regions can be serviced by the GPU concurrently allowing a larger reduction in 

execution time. 

 This multigrain execution model becomes more complicated by more 

complex and divergent regions such as that in ART. In the ART example, 8 parallel 

inner loops have to be split between the GPU and CPU. It is likely that some of these 

loops will run poorly on SIMT cores. In fact, in our example ART, overall runtime 

would increase using the above execution model and forking all inner loops to the 

GPU. This suggests moving workloads back and forth between SIMT and CPU cores 

based on the core best suited to handle the workload. The execution model suggested 

is shown in the figure below. For ART, when the outer loop of the multigrain region 

is reached, the loop would be forked onto multiple CPUs, displayed by point 2 in the 

figure. These CPUs would execute inner loop workloads that the scheduler left on the 

CPU. Workloads that run more efficiently would be forked to SIMT cores, as shown 

by point 3 in the figure. Point 4 demonstrates a back and forth effect that could occur 

if part of a workload runs better on the CPU and part runs better on a GPU. In this 

case, the thread of execution would bounce between CPU and SIMT cores. This 

effect would significantly increase the execution time of a non-heterogeneous system, 

but the closeness of the cores on a heterogeneous system makes this dual parallel 

model more likely to yield improvement. 
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Figure 10 More Complex Dual-Parallelism Execution Model Example 

Running Inner Nested Loops on a GPGPU 

Finding Loops 

 To investigate the possible benefit of exploiting multigrain parallelism, we 

reviewed the SPEC2000 suite and the OpenMP Source Code Repository to find 

multigrain loops [25, 26]. We then selected three of the benchmarks from these suites 

(ART, FFT, and MD) and profiled them running on both the CPU and GPU and the 

effect of the different processors on benchmark performance. 

CPU Simulator 

 To simulate CPU execution, we selected the Simple Scalar simulator. We use 

the out-of-order model in Simple Scalar. We have configured this simulator to mimic 

a single core on a multicore CPU chip.  
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 The simulator we used included a 2-level adaptive branch predictor with a 64 

entry RAS stack. We use an issue width of 4, with 4 integer ALUs, 2 integer 

multiplier/dividers, 2 floating point ALUs, 2 floating point multipliers, 2 floating 

point dividers and a register update unit of size 128. There was a 2 level cache 

hierarchy implemented with both the data and instruction level 2 cache having a 

latency of 20 cycles, and the data and instruction level 1 cache with a 1 cycle latency. 

There are 4 memory ports operating with a 18 cycle latency to get the first data 

chunk, followed by a 2 cycle latency for each additional chunk. For a more detailed 

description, the full CPU simulator configuration file is included in the appendix of 

this thesis.  

GPU Simulator 

 To simulate the GPU execution of code, we used the simulator GPGPU-sim. 

GPGPU-sim provides a detailed simulation model of NVIDIA GPUs running CUDA 

or OpenCL workloads [5]. The simulator allowed configuration of the GPU being 

simulated. In order to mimic the GPU cores common to heterogeneous architectures, 

we started with a stock Nvidia GTX480 GPU card and reconfigured the parameters. 

 We configured the simulator to these parameters based on research of current 

heterogeneous systems. To select the number of SIMT cores, we investigated several 

of the most prevalent heterogeneous systems available. Intel’s i7-3770 processor 

includes 4 Ivy Bridge CPU cores and 16 execution units on the Intel HD 4000 unit, 

which are similar to SIMT cores. We also looked into AMDs Steamroller architecture 

which includes 2 to 4 CPU cores and 3 to 8 compute units. Intel and AMD are the 

two most prominent examples of heterogeneous architectures; therefore, we chose to 
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model their ratio of a 4 to 1 GPU to CPU core ratio to a 2 to 1 GPU to CPU core 

ratio. For this research, we took the more conservative end of heterogeneous 

processing and allotted 8 GPU cores, which in our system implies a 2 to 1 GPU to 

CPU core ratio. We then scaled down all other assets on the GTX-480 chip to reflect 

this change, leaving us with essentially half a GTX-480 GPGPU being simulated. For 

a more detailed description of the simulator configuration, see the appendix. 

GPU Inner Loop Simulations 

 We began our investigation by determining whether the inner loops of 

multigrain parallel constructs would run well on a GPU. To do this, we converted the 

inner loops of the selected nested constructs into CUDA to be simulated on GPGPU-

sim. Due to the often small problem size and divergent behavior, it was unclear 

whether there would be any speedup obtained executing the code on GPU over a 

CPU. To compare these two execution models, we ran regions of interest on both 

Simple Scalar and GPGPUsim, comparing the resulting execution times. We assumed 

the processor in Simple Scalar had a 3.3 GHz clock, which mimics a mid-range 

Sandy Bridge CPU, with the processor in GPGPU-sim having a 1.4 GHz clock rate 

(which is the clock rate of the GTX480 processor). 

Results 

ART 

 ART is a benchmark taken from SPEC OpenMP 2000 benchmark suite. A 

majority of the computation takes place in an OpenMP region including the function 

match(). See the figure below for the format of the benchmark. 
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Figure 11 Nested Region of Interest in ART Benchmark 

 ART is a quadruple nested loop structure, with the outer loop exhibiting a low 

iteration count and very irregular. The compute_values_match(…) function which is 

called in the innermost loop, contains 10 loops, 2 of which are nested within 8 outer 

loops. These 8 outer loops in the compute_values_match(function) are much simpler 

and more computational in nature than the outer LOOP1 OpenMP loop. 

The inner loops were converted to CUDA, run on the GPU and their resulting 

runtime (with respect to the same loop running on the CPU) are shown below. 
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Figure 12 ART Benchmark Normalized Execution Time 

 

Art Loop Number GPU Cycles CPU Cycles 

1 22916 238563 

2 14839 79260 

3 18981 209677 

4 16005 79505 

5 22097 755831 

6 16891 63166 

7 3444995 2118270 

8 1079 654 
Table 1 ART Benchmark Execution Time in Cycles 

 From the results, five of the loops ran better on the GPU (loops 1, 2, 3, 4, 5 

and 6). The reminder of the loops ran better on the CPU. Deeper investigation of the 

two worst loops, 7 and 8, makes the cause of the slowdown clear. Loop 7 and 8 have 

a very low iteration count on the loop, either two or three in the SPEC provided input 

sets. Loop 8 also has divergent behavior due to the statement “if (Y[o][ti].y > 

Y[o][winner[o][0]].y),” which greatly inhibits possible GPU performance. 
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MD 

 MD is from the OpenMP Source Code Repository. It consists of one nested 

region of interest, shown below. 

 

Figure 13 MD Nested Region of Interest 

MD has two inner loops. The first is an initialization loop setting every 

element of f to 0. The second loop, is more interesting. This loop contains some 

divergence due to the if statement along with a reduction of pot. The functions dist, v, 

and dv do not contain any obvious hazards. The outer loop forks iterations of the 

inner loop and then computes a reduction that is the sum of the dot product in each of 

the dimensions of interest. Because j is always np on exit from the inner loop and vel 

is independent of the inner loop, the work on the outer loop can be run fully in 

parallel with the inner loop allowing work to be overlapped. 

This region was converted to CUDA and run on the GPU along with Simple 

Scalar for architectural comparisons. The resulting runtimes are shown below. 
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Figure 14 MD Benchmark Normalized Execution Time 

Molecular 
Dynamics GPU Cycles CPU Cycles 

  84295 557403 
Table 2 MD Benchmark Execution Time in Cycles 

 The MD Loop, shown below, ran almost 3 times as fast on the GPU as 

compared to the CPU. 

 

FFT6 

 FFT6 is also a benchmark from the OpenMP Source Code Repository. Three 

nested regions of interest were found in this benchmark. The resulting run times are 

shown below. 
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Figure 15 FFT6 Benchmark Normalized Execution Time 

 

FFT6 GPU Cycles CPU Cycles 

Loop1 47419 111743 

Loop2 11973 43967 

Loop3 8836 179868 
Table 3 FFT6 Benchmark Execution Time in Cycles 

 The first nested region, which runs with nearly the same speed on both the 

CPU and GPU is slowed on the GPU due to divergence. In this loop, shown below, 

the if statement splits the iterations into two separate control flows significantly 

delaying the execution time. 

 
Figure 16 FFT6 Loop 1 
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 The remainder of the loops showed improvement. The second loop is limited 

due to its size. This loop, called the butterfly computation, starts with the largest 

amount of work in the outer loop, then declining by log(n) each time. The decreased 

available work limits execution time gains over the CPU which excels at serial code. 

 
Figure 17 FFT6 Loop 2 

 The final region runs over 4x as fast on the GPU. This is due to the fine grain 

and high iteration work available in the inner loop. 

 
Figure 18 FFT6 Loop 3 
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Conclusions 

 

 For these several simulated workloads, we see a mixed set of results. The 

majority of the workloads (6 ART kernels, MD, and 2 FFT6 kernels) showed 

decreased execution time when executed by the GPU, however three of the kernels 

did not improve. Accurately exploiting multigrain parallelism would allow for modest 

execution time improvement for two thirds of the kernels tested, however without an 

accurate heuristic to determine which kernels to execute on which core type, there 

could be a net negative effect, such as in the case of ART. It is clear some sort of 

scheduling algorithm will need to be developed if multigrain parallelism is to be 

effectively exploited. However, it appears there is the potential for significant runtime 

improvement through exploiting these constructs. 

Concurrency Analysis 
 To more fully analyze the efficacy of the single and dual parallel execution 

models, a custom analysis that modeled the heterogeneous architecture is necessary. 

Currently there are few joint CPU/GPU simulators, such as GEM5 and multi2sim, but 

neither of these are heterogeneous simulators, nor would they support the execution 

models we propose without significant alterations [28, 34]. Without existing 

simulator support, we designed a concurrent execution analysis model where our 

execution models could be tested. We then applied this analysis to three multigrain 

loops to begin to analyze the execution models. A description of the analysis we 

performed, followed by the results of our experiments, are given below. 
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Concurrency Analysis 

 We analyzed the full heterogeneous system by combining the results from 

Simple Scalar and GPGPU-sim to generate a model of a heterogeneous system. This 

analysis was developed to emulate a heterogeneous system, which combined 8 

GTX480 style streaming multiprocessors, with a 4 core aggressively out of order 

CPU. The GPU simulator and CPU simulator from before were reused in the 

heterogeneous analysis infrastructure. For a more in depth description of the cores 

used, refer back to the CPU simulator and GPU simulator sections of the thesis. 

Assumptions Made 

 We selected 4 CPU cores based on experimentation with our server. On 

running each of the selected regions, we found that openMP did not exceed 4 threads 

on the CPU side to execute the selected parallel portions. We assumed linear speedup 

for these 4 cores, which is an optimistic assumption, however after running the 

openMP regions on our servers ranging between 1 and 4 threads, we found that a 

nearly linear speedup factor (>.95) was seen for each of these parallel regions, 

making the assumption fairly realistic. We also assumed that the highest level of 

memory shared is the DRAM. This is pessimistic as most proposed and common 

heterogeneous cores have some sort of shared memory structure prior to DRAM (i.e. 

L2 cache is shared). This adds significant memory latency to the execution time.  

In order to maintain cache coherency, we also took the most pessimistic 

assumption, assuming no available cache coherency mechanism and entirely flushing 

the cache upon a transition from GPU to CPU or vice versa. This requires the CPU 

and GPU to entirely repopulate the cache every time program control is reestablished.  
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Functionality 

The designed simulator operated by breaking the program down into sections 

by the possibility of forwarding code on each section line to either the CPU or GPU. 

The simulator then determined the IPC at all points for these sections on both the 

CPU and GPU. For example, ART is fragmented into a section around each of the 8 

identified inner loops, along with a section before the target openMP region, one after 

the target openMP region until the multigrain loops, one after the inner loops until the 

end of the target openMP region, and one region after the target openMP region. This 

produced 12 regions, 8 of which could be targeted at the GPU. For these regions, the 

Simple Scalar simulator described earlier was used to simulate each region, followed 

by GPGPU-sim if the region could be GPU targeted. To make the GPU simulations 

accurate with the possibility of 4 CPU cores forwarding kernels at any time, GPGPU-

sim simulated all kernel arrival combinations in all forwarding orders and used results 

from the actual forwarding scenario simulated by the concurrency simulator.  

The arrival order has a significant effect on execution time in Nvidia GPUs 

due to the first come, first serve scheduler onboard. Their scheduler gives the first 

arriving kernel the maximum usable resources. Kernels forwarded at a later time can 

only access the remaining resources unused by the previously forwarded kernels. 

There is no adjustment for underutilization of resources or effective allocation by the 

Nvidia scheduler.  

 With the generated IPC and instruction information for each of the code 

segments, the simulator steps through cycle by cycle and updates the current segment 

of code being executed as necessary. 
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 Although the IPC number used is simply an average over the section, because 

section granularity is used and the CPUs are independent, the CPU IPC should remain 

identical to cycle by cycle simulator performance over each section. For the GPU, 

due to the multiple kernels being executed, the IPC numbers incorporate error due to 

different kernels being in different stages of execution when other kernels are 

launched on the GPU. We believe the error introduced by this is minimal due to the 

short kernels with often only a single computation being performed making the 

position in the kernel irrelevant with respect to GPU IPC. 

Determining Which Core Runs Code 

 For these experiments, code is forwarded to the CPU or GPU based on static 

runtime results. This scheduling heuristic guarantees the optimal scheduling of code 

sections and is therefore an optimistic assumption in the current dynamically 

scheduled world. Applying some simple heuristics, such as setting a loop iteration 

cutoff at 500, setting a minimum loop instruction count, or simply not forwarding 

loops to the GPU with divergent instructions and behavior, all yield the same segment 

scheduling as the ideal case. As we are not making any comments on the scheduler 

involved in heterogeneous architectures and all obvious scheduling heuristics yield 

nearly ideal results for the selected regions, this assumption does not significantly 

skew the results. 

Concurrency Experiment 

 The concurrency simulator was designed to get full benchmark execution time 

estimates for multigrain parallel benchmarks. Three of the benchmarks were 
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simulated using the concurrency simulator, Art, MD, and FFT6. For each of these 

benchmarks, we ran 4 separate tests, numbered in the results as #1, #2, #3, and #4 

with each number corresponding to a unique execution model. These tests correspond 

as follows: 

1. Sequential execution time. All code is run sequentially on the CPU only. 

2. Sequential CPU, parallel GPU execution time. All code is run sequentially on 

the CPU, but with a single GPU that nested regions can be forwarded to. This 

is the mono parallel execution model discussed earlier. 

3. Linear speedup CPU, individual GPU. All code is run in parallel on the CPU, 

assuming linear speedup when adding cores. Each core has access to a GPU 

which is not shared. 

4. Linear speedup CPU, parallel GPU (with contention). All code is run in 

parallel on the CPU, assuming linear speedup when adding cores. Each core 

has access to a single shared GPU, introducing contention between the cores. 

This is the dual parallel execution model discussed earlier. 

We evaluated each of these results for each benchmark. The results are discussed 

below. 

ART 

 Art was profiled using the concurrency simulator. The results are normalized 

to serial execution time and shown in the figure and table below. 
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Figure 19 ART Benchmark Normalized Concurrent Execution Results 

 

Execution Model Execution Time (Cycles) Normalized Execution Time 

#1 14179704 1 

#2 9583332 0.675848523 

#3 2395833 0.168962131 

#4 2397708 0.169094362 
Table 4 ART Benchmark Concurrent Execution Results 

 From the results, you see a speed up of roughly 73% for the dual execution 

model over a serial execution model. You also find very little contention for the GPU 

in the ART benchmark. Contention is measured as the difference between #3 and #4, 

or the difference between all cores sharing a GPU versus having their own individual 

GPU. From the results, you see a less than 2000 cycle difference between #3 and #4 

implying that GPU contention accounts for very little delay in execution time.  

MD 

 MD was profiled using the concurrency simulator. The results are shown in 

the figure and table below. 
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Figure 20 MD Benchmark Normalized Concurrent Execution Results 

Execution Model Execution Time (Cycles) Normalized Execution Time 

#1 2071560 1 

#2 887094 0.428225106 

#3 221773 0.107056035 

#4 383575 0.18516239 
Table 5 MD Benchmark Concurrent Execution Results 

 MD shows a 5x speedup with a dual execution model over a serial execution 

model. However, if each core had its own dedicated GPU a 10x speedup would be 

possible. This indicates that the GPU was overscheduled with all CPU cores 

forwarding to a single GPU because contention was a significant factor in execution 

time. Execution time would be decreased by a factor of nearly 2x with a larger GPU. 

FFT6 

FFT6 was profiled using the concurrency simulator. The results are shown in 

the figure and table below. 
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Figure 21 FFT6 Benchmark Normalized Concurrent Execution Results 

Execution Model Execution Time (Cycles) Normalized Execution Time 

#1 778920 1 

#2 664140 0.85264212 

#3 166035 0.21316053 

#4 167660 0.215246752 
Table 6 FFT6 Benchmark Concurrent Execution Results 

FFT6 showed roughly 5x speedup using the dual execution model over 

sequential execution. There also was very little GPU contention, with less than a 2000 

cycle difference between individual and shard GPUs. 

Conclusions 
 

 We initially began analysis by estimating the performance gain by offloading 

loops individually, shown as bar 2 in the graphs above. All bars normalized to the 

sequential execution bars, as shown in the figure below, provide speedup of 2.34x, 

1.17x, and 2.17x for MD, FFT6 and ART respectively. The average execution time 

improvement is 1.89x. The speed-ups exhibited in these benchmarks are quite 

disappointing considering the speed-ups often seen when executing parallel code on a 
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GPU. However, as described before, these code segments are more complex. There is 

a mixture of SIMT and non-SIMT loops, making only a relatively small portion of 

each region targetable on a GPU. In the figure below, we display the normalized 

execution time as a function of the loops that can execute on the GPU. From viewing 

these figures, it is clear that there is a significant amount of code that runs more 

efficiently on the CPU, rather than the GPU. This creates a troubling instance of 

Amdahl’s Law in which the GPU is only able to speed up a small portion of overall 

execution time. On top of this, some of the loops gainfully executed on the GPU do 

not exhibit massive speed-ups. These GPU targeted loops range from a 14.3x 

speedup, to a small 1.53x speedup. This effect is due to the complex nature of the 

loops, specifically small numbers of iterations (Loop 10), control flow divergence 

(Loop2), and non-unit stride memory accesses (Loop10, Loop14, Loop16, and 

Loop18). This further decreases the speed-ups seen in the #2 bars. 

 

Figure 22 : Execution Time Speed-up Multiplier for Concurrent Simulator Execution Models 
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 The next set of bars (#3 and #4 from concurrency analysis results) 

demonstrate a parallel trace, in which the openMP pragmas run on 4 CPU cores. 

Within the traces, we alternate between CPU cores and GPU cores, with #3 having a 

dedicated GPU, and #4 utilizing a shared GPU. As shown in the “Results” section of 

the paper, dual parallelism significantly outperforms the mono parallelism described 

above. Dual parallelism provided a speedup of 5.40x, 4.65x and 8.67x for MD, FFT6, 

and ART, respectively. By running these CPU cores in parallel, the Amdahl’s law 

restriction encountered in the mono parallel execution is lessened where the GPU is 

significantly under-utilized. By making the CPU also operate in parallel, we are able 

to utilize the GPU to a greater degree. To compare the utilization of the GPU between 

mono and dual parallelism, we can compare the results in bar #3 in #4. Bar #3 gives 

each CPU thread a dedicated GPU in simulation, therefore demonstrating the ideal 

speedup of the parallel system. Bar #4 however does not provide the dedicated GPU 

to each CPU core. In Bar #4, contention will occur if the GPU is over-utilized. For 

FFT6 and ART, Bar #3 and #4 are nearly identical, indicating almost no contention. 

For MD, the ideal speedup is 1.73x faster, indicating that there is a GPU 

overutilization and therefore a contention issue. Even in the case where contention 

causes a problem, dual parallelism still out-performs mono parallelism by more than 

2x.  

Related Works 

 Heterogeneous microprocessors have been commercially released by Intel 

since the Sandy Bridge architecture [19] along with AMD since the release of their 

fused accelerated processing unit (APU) architecture [5]. A fair amount of research 
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has been done into heterogeneous microprocessors and these cores. Daga et al [9] and 

Spafford et al [31] evaluated AMD’s Fusion architecture [5], examining 

communication bottlenecks faced by discrete systems [15]. They however only 

considered traditional GPU workloads from the SHOC [10] and HPC Challenge [11] 

benchmark suites. They did not investigate new workloads enabled by the 

architectural differences introduced by these heterogeneous systems. Building on that, 

Arora et al [1] included several SPEC CPU 2000/2006 workloads [32] in their 

research along with the traditional GPU workloads, namely Rodinia [8]. The SPEC 

CPU benchmarks contain more irregular, traditionally CPU-targeted workloads, 

similar to those involved in our research; however, Arora focused on the effect of 

heterogeneity on the CPU cores, not the GPU cores as we focused on in our work. 

Arora showed that CPUs will execute more serial code as parallel loops are off-

loaded to the GPU. Our research intends to find the balance between CPU and GPU 

execution by developing new parallelization techniques and exploiting the CPU-GPU 

communication interfaces more effectively. 

 The scheduling of code between the CPU and GPU is another related area. 

GPUs are specialized processors that do not perform well on all types of code; 

therefore, segments of our research focus on the scheduling of loops between the 

GPU and the CPU. Research groups have created performance models [2, 16, 17] for 

these heterogeneous processors and off-line profiling [22, 30] to statically schedule 

loops. Dynamic scheduling has also been investigated, such as [20] where each loop 

is scheduled on both the CPU and GPU cores the first time the loop is encountered. 

Subsequent executions of the loop are then delegated based on initial performance. 
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Dynamic work stealing [29, 30] was also investigated to schedule workloads on 

heterogeneous systems. The primary difference between these techniques and our 

proposed dual parallel technique is that they only schedule work from a single loop, 

thereby exploiting only homogenous parallelism. Dual parallelism exploits both types 

of parallelism from both loops, known as heterogeneous parallelism. This technique 

is much more effective when the parallelism in each loop is limited.  

 This multigrain parallelism we exploit is related to dynamic thread-block 

launch (DTBL) [35], which provides hardware support in the GPU such that a loop 

running on the GPU can initiate another instance of itself. This is effective in 

workloads with an initially indeterminate size, such as BFS. DTBL allows the GPU to 

create work dynamically as each new node is visited. This is similar to multigrain 

parallelism because DTBL enables multiple instances of a loop to execute 

simultaneously on a CPU. This increases the chip utilization. The difference, 

however, is that DTBL is not targeted for heterogeneous microprocessors. It only 

creates parallelism for the GPU; therefore, it is homogenous parallelism as opposed to 

the multigrain parallelism we employ which forks onto both CPU and GPU cores. 

DTBL can also only exploit SIMT parallelism, whereas multigrain parallelism can 

handle non-SIMT parallelism also. 

 

Future Work 

 We hope to continue this research in two separate directions. First, we hope to 

develop a heterogeneous computing benchmark suite. Currently, GPU research 

utilizes suites developed for discrete GPU systems such as Rodinia, Parboil, and 
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SHOC [8, 10, 33]. Because they target discrete GPU systems, they include massively 

parallel computations for which existing parallelization techniques are effective. 

These benchmarks do not accurately represent the workloads that will be opened to 

parallelization on heterogeneous systems. In order to explore heterogeneous 

computing systems, new benchmarks are needed. We hope to find enough programs 

to form a benchmark suite which highlights the capabilities of heterogeneous 

microprocessors including both task-level parallel and data-level parallel programs. 

 Second, we hope to apply the benchmarks we have developed and the suite we 

hope to develop on heterogeneous architectural simulators. Currently, there are two 

open source simulators capable of modeling heterogeneous microprocessors that we 

have considered: gem5-gpu [28] and Multi2Sim [34]. Regardless of the simulator we 

use, nothing available allows us to simulate the proposed multigrain parallelism 

execution models we investigated in this research. Therefore, significant simulator 

modifications will be required to allow proper data movement and execution models. 

We hope to develop an architectural simulator capable of accurately modeling these 

execution models so that we may further investigate it as a parallelization technique.  

 

 

 

 

 

 

 



39 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



40 

 

Appendices 
 

 

Figure 23 Simple Scalar Out of Order Configuration Parameters 
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# functional simulator specification 

-gpgpu_ptx_instruction_classification 1 

-gpgpu_ptx_sim_mode 0 

-gpgpu_ptx_force_max_capability 20 

 

 

# SASS execution (only supported with CUDA >= 4.0) 

-gpgpu_ptx_convert_to_ptxplus 0 

-gpgpu_ptx_save_converted_ptxplus 0 

 

# high level architecture configuration 

-gpgpu_n_clusters 2 

-gpgpu_n_cores_per_cluster 1 

-gpgpu_n_mem 6 

-gpgpu_n_sub_partition_per_mchannel 2 

 

#-gpgpu_clock_domains <Core Clock>:<Interconnect Clock>:<L2 Clock>:<DRAM Clock> 

# In Fermi, each pipeline has 16 execution units, so the Core clock needs to be divided 

# by 2. (GPGPU-Sim simulates a warp (32 threads) in a single cycle). 1400/2 = 700 

-gpgpu_clock_domains 700.0:700.0:700.0:924.0 

 

# shader core pipeline config 

-gpgpu_shader_registers 32768 

 

# This implies a maximum of 48 warps/SM 

-gpgpu_shader_core_pipeline 1536:32 

#-gpgpu_shader_core_pipeline 1104:23 

-gpgpu_shader_cta 8 

-gpgpu_simd_model 1 

 

# Pipeline widths and number of FUs 

# ID_OC_SP,ID_OC_SFU,ID_OC_MEM,OC_EX_SP,OC_EX_SFU,OC_EX_MEM,EX_WB 

-gpgpu_pipeline_widths 2,1,1,2,1,1,2 

-gpgpu_num_sp_units 2 

-gpgpu_num_sfu_units 1 

 

# Instruction latencies and initiation intervals 

# "ADD,MAX,MUL,MAD,DIV" 

-ptx_opcode_latency_int 4,13,4,5,145 

-ptx_opcode_initiation_int 1,2,2,1,8 

-ptx_opcode_latency_fp 4,13,4,5,39 

-ptx_opcode_initiation_fp 1,2,1,1,4 

-ptx_opcode_latency_dp 8,19,8,8,330 

-ptx_opcode_initiation_dp 8,16,8,8,130 

 

 

# In Fermi, the cache and shared memory can be configured to 16kb:48kb(default) or 48kb:16kb 

# 

<nsets>:<bsize>:<assoc>,<rep>:<wr>:<alloc>:<wr_alloc>,<mshr>:<N>:<merge>,<mq>:**<fifo_e

ntry> 

# ** Optional parameter - Required when mshr_type==Texture Fifo 

-gpgpu_cache:dl1  32:128:4,L:L:m:N,A:32:8,8 

-gpgpu_shmem_size 49152 

 

# The alternative configuration for fermi in case cudaFuncCachePreferL1 is selected 

#-gpgpu_cache:dl1  64:128:6,L:L:m:N,A:32:8,8 
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#-gpgpu_shmem_size 16384 

 

# 64 sets, each 128 bytes 8-way for each memory sub partition. This gives 786KB L2 cache 

-gpgpu_cache:dl2 64:128:8,L:B:m:W,A:32:4,4:0,32 

-gpgpu_cache:dl2_texture_only 0 

 

-gpgpu_cache:il1 4:128:4,L:R:f:N,A:2:32,4 

-gpgpu_tex_cache:l1 4:128:24,L:R:m:N,F:128:4,128:2 

-gpgpu_const_cache:l1 64:64:2,L:R:f:N,A:2:32,4 

 

# enable operand collector 

-gpgpu_operand_collector_num_units_sp 6 

-gpgpu_operand_collector_num_units_sfu 8 

-gpgpu_operand_collector_num_in_ports_sp 2 

-gpgpu_operand_collector_num_out_ports_sp 2 

-gpgpu_num_reg_banks 16 

 

# shared memory bankconflict detection 

-gpgpu_shmem_num_banks 32 

-gpgpu_shmem_limited_broadcast 0 

-gpgpu_shmem_warp_parts 1 

 

-gpgpu_max_insn_issue_per_warp 1 

 

# interconnection 

-network_mode 1 

-inter_config_file config_fermi_islip.icnt 

 

# memory partition latency config 

-rop_latency 120 

-dram_latency 100 

 

# dram model config 

-gpgpu_dram_scheduler 1 

# The DRAM return queue and the scheduler queue together should provide buffer 

# to sustain the memory level parallelism to tolerate DRAM latency 

# To allow 100% DRAM utility, there should at least be enough buffer to sustain 

# the minimum DRAM latency (100 core cycles).  I.e. 

#   Total buffer space required = 100 x 924MHz / 700MHz = 132 

-gpgpu_frfcfs_dram_sched_queue_size 16 

-gpgpu_dram_return_queue_size 116 

 

# for Fermi, bus width is 384bits, this is 8 bytes (4 bytes at each DRAM chip) per memory partition 

-gpgpu_n_mem_per_ctrlr 2 

-gpgpu_dram_buswidth 4 

-gpgpu_dram_burst_length 8 

-dram_data_command_freq_ratio 4  # GDDR5 is QDR 

-gpgpu_mem_address_mask 1 

-gpgpu_mem_addr_mapping 

dramid@8;00000000.00000000.00000000.00000000.0000RRRR.RRRRRRRR.BBBCCCCB.CCSS

SSSS 

 

# GDDR5 timing from hynix H5GQ1H24AFR 

# to disable bank groups, set nbkgrp to 1 and tCCDL and tRTPL to 0 

-gpgpu_dram_timing_opt "nbk=16:CCD=2:RRD=6:RCD=12:RAS=28:RP=12:RC=40: 

                        CL=12:WL=4:CDLR=5:WR=12:nbkgrp=4:CCDL=3:RTPL=2" 
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# Fermi has two schedulers per core 

-gpgpu_num_sched_per_core 2 

# Two Level Scheduler with active and pending pools 

#-gpgpu_scheduler two_level_active:6:0:1 

# Loose round robbin scheduler 

#-gpgpu_scheduler lrr 

# Greedy then oldest scheduler 

-gpgpu_scheduler gto 

 

# stat collection 

-gpgpu_memlatency_stat 14 

-gpgpu_runtime_stat 500 

-enable_ptx_file_line_stats 1 

-visualizer_enabled 1 

 

# power model configs 

-power_simulation_enabled 1 

-gpuwattch_xml_file gpuwattch_gtx480.xml 

 

# tracing functionality 

-trace_enabled 0 

-trace_components WARP_SCHEDULER,SCOREBOARD 

-trace_sampling_core 0 
Figure 24 GPGPU-Sim Configuration File 
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