A Survey on Neural Trojans

Yuntao Liu, Ankit Mondal, Abhishek Chakraborty, Michael Zuzak, Nina Jacobsen,

Daniel Xing, and Ankur Srivastava
University of Maryland, College Park

Abstract

Neural networks have become increasingly prevalent in many
real-world applications including security critical ones. Due
to the high hardware requirement and time consumption to
train high-performance neural network models, users often
outsource training to a machine-learning-as-a-service (MLaaS)
provider. This puts the integrity of the trained model at risk.
In 2017, Liu et al. found that, by mixing the training data with
a few malicious samples of a certain trigger pattern, hidden
functionality can be embedded in the trained network which
can be evoked by the trigger pattern [33]. We refer to this kind
of hidden malicious functionality as neural Trojans. In this
paper, we survey a myriad of neural Trojan attack and defense
techniques that have been proposed over the last few years.

In a neural Trojan insertion attack, the attacker can be the
MLaaS provider itself or a third party capable of adding or tam-
pering with training data. In most research on attacks, the at-
tacker selects the Trojan’s functionality and a set of input pat-
terns that will trigger the Trojan. Training data poisoning is
the most common way to make the neural network acquire
the Trojan functionality. Trojan embedding methods that mod-
ify the training algorithm or directly interfere with the neural
network’s execution at the binary level have also been stud-
ied. Defense techniques include detecting neural Trojans in the
model and/or Trojan trigger patterns, erasing the Trojan’s func-
tionality from the neural network model, and bypassing the
Trojan. It was also shown that carefully crafted neural Trojans
can be used to mitigate other types of attacks. We systematize
the above attack and defense approaches in this paper.

1 Introduction

While neural networks demonstrate exceptional capabilities
in various tasks of machine learning nowadays, they are also
becoming larger and deeper. As a result, the requirement of
hardware, time, and data to train a network also increases dra-
matically. Under this scenario, machine-learning-as-a-service
(MLaaS) becomes an increasingly popular business model. How-
ever, the training process in MLaaS$ is not transparent and may
embed neural Trojans, i.e. hidden malicious functionalities, into
the neural network. Many research papers have demonstrated
the severity of this attack [4, 11-13, 17, 19, 26-28, 30, 32, 33, 39,
40, 43, 51, 52]. The effect of neural Trojans in the neural net-
work’s deployment is illustrated in Fig. 1. If the input is benign
(i.e. without the Trojan trigger pattern), the Trojan will not be
activated and the network will work normally. However, if the
Trojan trigger exists in the image, the network will malfunction
and exhibit the attacker’s intended functionality. Both neural
Trojan attacks (i.e. to inject Trojan’s malicious functionality
into neural networks) and countermeasures have been widely
studied.
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Figure 1: In the deployment of a Trojan-infected neural
network, an input sample with the Trojan trigger pattern
will cause the network to malfunction and exhibit the at-
tacker’s intended functionality.

The most popular way to inject Trojans is training data poi-
soning [17, 24, 32, 33], where a small amount of malicious train-
ing samples are mixed with the normal training data. These ma-
licious data are sometimes carefully crafted in order to make the
infected network highly sensitive to the Trojan triggers while
maintaining normal behavior in all other cases. This differs Tro-
jan attacks from conventional poisoning attacks against machine
learning models where the attacker tries to degrade the trained
model’s performance with a small amount of added malicious
training data. Other Trojan injection techniques have also been
studied. Such techniques include modifying the training algo-
rithms for a small subset of neurons based on the Trojan’s func-
tionality and the trigger pattern [12, 13] and flipping or rewriting
certain bits in the neural network’s binary code[27, 30].

The stealthiness of neural Trojans makes them very difficult
to defend against. Many defense methods focused on detecting
Trojan triggers from the input sample [2, 3, 7, 9, 10, 16, 22, 25,
35, 47, 48]. Other works have proposed restoring compromised
neural network [21, 29, 46, 53] and reconstructing input samples
to bypass neural Trojans [14, 33, 45].

In this paper, we survey the attack and defense strategies re-
lated to neural Trojans in order to give readers a comprehensive
view of this field.

2 Neural Trojan Attacks

In the last 3 years, many Trojan embedding attack methods
have been proposed. These attacks can be broadly classified into
numeric-level attacks and binary-level attacks. Numeric-level
attacks aim to incorporate malicious functionality of the Trojan
by modifying the numeric values of neural network weights.
This is often done by injecting poisoning data in the training
process and/or modify the training algorithm. On the other
hand, binary-level attacks interfere with the execution of neural



network code directly. In the rest of this section, we summarize
the works in both categories.

2.1 Numeric-Level Attacks

2.1.1 Trojan Insertion by Training Data Poisoning The concept
of neural Trojans have been introduced in multiple papers [17,
24, 32, 33]. In these works, neural Trojans are embedded in
the neural networks when the networks are trained with a
compromised dataset and modified code. This process typically
involves the encoding of malicious functionality within the
weights of the network. One or more specific input patterns
can trigger/activate the Trojan and produce the output behavior
which was desired by the attacker but which may be undesired
or harmful for the original user. An example of such a scenario is
a face recognition system to enter a building where the attacker
tries to impersonate another person to gain unauthorized entry.
General countermeasures such as Trojan detection and re-
moval were also discussed in [17, 33]. Although most Trojan at-
tacks focus on deep convolutional networks, Yang et al. extended
neural Trojan attacks to long-short-term-memory (LSTM) and
recurrent networks [51]. A weaker threat model was consid-
ered in [11] where the attacker does not have knowledge of the
victim model, doesn’t have access to the training data, and can
only inject a limited number of poisoned samples. It focuses
on targeted attacks, only creating backdoor instances without
affecting the performance of the system so as to evade detection.
Evaluation shows that with a single instance as the backdoor
key, only 5 samples of it need to be added to a huge training
set; whereas when a pattern is the key, 50 poisoned samples
are enough. Here “key” refers either to a malicious new input
pattern added to the training set, or malicious features inserted
into existing input patterns of the training set.
2.1.2  Trojan Insertion without Poisoning Trojans can also be
embedded into neural networks without training data poisoning.
Clements et al. [12] developed a novel algorithm for inserting
Trojans into a trained neural network model by modification of
the computing operations rather than modifying the network
weights by poisoning the training data. This makes existing
poisoning defence techniques incapable of detecting the attack.
The threat model assumes that the attacker has access to the
trained model which is maliciously modified before deployment.
The attack methodology selects a layer in the network for the
purpose of modification, the latter being calculated using the
gradient of the network output w.r.t. this layer (the Jacobian).
This gradient tells how the victim neuron’s operation should
change. With only a small fraction of neurons tampered with,
both targeted and untargeted versions of the attack yield high
success rate. The authors studied the practicality of [12]’s attack
in [13]. An adversary in the supply chain has the capability to
modify the neural network hardware to change its predictions
upon a certain trigger. Modifications to neurons can be achieved
by adding a MUX or altering internal structure of certain op-
erations. The paper also proposes defense strategies such as
adversarial training to improve robustness of model and possi-
bly combining it with hardware Trojan detection methods (eg.
side-channel based).
2.1.3 Hiding Trojan Triggers Although most Trojan insertion
techniques use a certain pattern, it is desirable to make these
patterns indistinguishable when mixed with legitimate data in

order to evade human inspection. Barni et al. [4] proposed a
Trojan insertion approach where the label of the poisoned data
is not tampered with. The advantage is that, upon inspection,
the poisoned samples would not be detected merely on the basis
of an accompanying poisoned label. To perform the attack, a
target class ¢ is chosen and a fraction of training data samples
belonging to ¢ is poisoned by adding a backdoor signal v. After
the NN is trained on the training set which is contaminated
with some poisoned samples of class ¢, some test samples not
belonging to class t and corrupted with signal v end up being
classified as t. Thus, the network learns that the presence of v
in a sample is an indicator of the sample belonging to class t.

Liao et al. designed static and adaptive Trojan insertion tech-
niques. In their work, the indistinguishability of Trojan trigger
examples is attained by a magnitude constraint on the pertur-
bations to craft such examples [28]. Li et al. generalized this ap-
proach and demonstrated the trade-off between the effectiveness
and stealth of Trojans [26]. They also developed an optimiza-
tion algorithm involving L, and L, regularization to distribute
the trigger throughout the victim image. Saha et al. proposed
to hide the Trojan triggers by not using the poisoned data in
training at all. Instead, they took a fine-tune approach in the
training process. The backdoor trigger samples are given the
correct label and only used at test time. These samples are vi-
sually indistinguishable from legitimate data but bear certain
features that will trigger the Trojan [40].

2.1.4  Neural Trojan Insertion in Transfer Learning Gu et al. [19]
were the first to exploit transfer learning as a means of Trojan
insertion. In transfer learning, a new model (called the ‘student
model’) is obtained by fine-tuning a pre-trained model (‘teacher
model’) for another similar task. The network’s weights can be
tampered with during this process which may result in Trojan
insertion. Additionally, security vulnerabilities in online repos-
itories are scrutinized and it was found that an adversary can
compromise a benign model with a malicious transfer learning
process. Yao et al. proposed latent backdoor attack in transfer
learning where the student model takes all but the last layers
from the teacher model [52]. In this case, the infected teacher
model will have different latent representations (i.e. the second
last layer neuron values) from that of a clean model. They found
that latent backdoor embedded in the teacher model can be
transferred to active backdoor in the student model. In [43],
Tan and Shokri pointed out that backdoor detection schemes
mostly rely on the distribution difference between the latent
representations of clean and backdoor examples. They hence
propose to make the two latent representation distributions as
close as possible and evaded detection schemes proposed in
[9, 29, 33, 44].

2.2 Binary-Level Attacks

Trojan attacks that involve manipulating the binary code of
neural networks have been investigated. These attacks often
embed malicious information in the bit representation of the
neural network weights.

In [27], Li et al. propose a hardware-software framework for
inserting Trojans into a neural network, where the attacker is
assumed to be a third party somewhere in the supply chain.
The authors implement two attacks: one to misclassify an input
in one class as a member of a target class and another to put



a backdoor in the neural network which will allow malicious
training data to be added. The Trojan circuitry is implemented
in hardware, either as an add-tree or as a multiply-accumulate
structure. The software part of the Trojan is inserted into a
subnet (i.e. subset of weights) during training, where the subnet
will be trained for malicious purposes. The Trojan weights are
trained separately from the benign part of the neural network.
When the Trojan is activated, the circuitry will cause partial
adds to occur in the convolution operation, since not all of the
weights will be active. The authors look at two different subnet
architectures: (1) pixel parallelism, where a subset of kernel
weights are passed through the subnet, and (2) input channel
parallelism, where a subset of input channels are passed through.
In their experiments, the pixel parallelism approach resulted in
less accuracy degradation.

Liu et al. [30] propose an attack called SIN?, for “stealth infec-
tion” of a neural network, using the same supply chain threat
model as described above. The Trojan in this case is any code
that can be executed on the runtime system; the result of the
attack is therefore not restricted to output misclassification. This
attack is somewhat analogous to digital steganography. Here,
the Trojan is embedded into the redundant space of the neural
network’s weight parameters. For example, the authors suc-
cessfully inserted a fork bomb into the neural network, thus
implementing a denial of service (DoS) attack when the Trojan
was triggered.

In contrast to the attacks above where the Trojan is inserted
during the training process, Rakin et al. [39] demonstrate a way
of inserting Trojans into a neural network to achieve misclassi-
fication without retraining. The attackers must know the neural
network’s architecture and parameters, but not necessarily the
training process. The authors’ “targeted bit Trojan” approach
involves flipping certain bits of the neural network’s weights.
To determine which bits need to be flipped, the last-layer neu-
rons with the most impact on the output for the targeted class
are found using a gradient ranking approach. The trigger is
then generated using a minimization optimization technique.
Then, the original weight matrix and the final optimized mali-
cious weight matrix are compared, providing the information
on which bits need to be flipped. The Trojan is put into action
by using a row-hammer attack to flip the targeted bits of the
weights in main memory. In one experiment, the authors were
able to achieve misclassification with only 85 bit flips.

2.3 Comparison with Other Attacks

Besides neural Trojans, other types of attacks on neural net-
works have also been studied. In this section, we provide a
taxonomy of these attacks and discuss their relationship with
neural Trojan attacks. These attacks can be broadly classified
into poisoning attacks and exploratory attacks.
2.3.1 Poisoning Attacks Most machine learning algorithms as-
sume the integrity of the training data. However, the integrity of
the training data could be corrupted. In a poisoning attack, the
attacker’s objective is to reduce the accuracy of the learned model.
This objective is what discriminates poisoning attacks from
Trojan attacks, since the latter’s objective is to inject hidden
malicious functionality without harming the overall accuracy of
the neural model, although training data poisoning is one way
to infect a neural model with Trojans.

In a poisoning attack, the attacker is aware of the training
algorithm but does not have control over the training process.
However, he/she is able to manipulate (add, remove, or change)
a small amount of the training samples. Biggio et al. proposed
the gradient ascend method in [6] to poison the training process
of support vector machines (SVM) which degraded the SVM’s
performance significantly. Mei et al. generalized this poisoning
approach [34]. They formulated a bi-level optimization problem
to obtain poisoned training samples that result in the largest
decrease in the accuracy of the learned model. Yang et al. also
proposed a poisoning attack on neural networks [50]. In their
approach, an autoencoder is trained to accelerate poisoned data
generation which substitutes time-consuming gradient calcula-
tions.

2.3.2  Exploratory Attacks In an exploratory attack, the attacker
looks for small perturbations of samples that leads to misclassi-
fication. There are different models about the attacker’s knowl-
edge: white-box model, i.e. the attacker has the exact knowledge
of the neural network and can use the network’s specifications
to craft adversarial samples [5, 18, 23, 38, 42, 49] and the black-
box model, i.e. the attacker has no knowledge about the network
and can only query the model as a black box [36, 37]. Many
white-box attacks craft adversarial examples using gradient-
based methods, such as the fast gradient sign method (FGSM)
[18] and Jacobian saliency map (JSM) method [38]. Black-box
attacks have been described in [36, 37], where a local substi-
tute NN is trained and used to find adversarial examples. This
is based on the transferrability of vulnerability to adversarial
samples among different machine learning models.

2.3.3  Neural Trojan’s Relevance to Existing Attacks As men-
tioned above, neural Trojans’ objective is to embed hidden func-
tionalities in neural networks which are hard to detect and
activated only by rare input patterns. Embedding Trojans al-
most does not affect the normal functionalities of the neural
network. In contrast, the poisoning attacks aim at degrading
the accuracy of the neural networks.

Exploratory attacks are carried out in the deployment of the
neural network while neural Trojans are injected during the
training phase. The triggers of neural Trojans are crafted from
a illegitimate distribution which is different from the legitimate
distribution. In contrast, in an exploratory attack, adversarial
examples are crafted from individual legitimate samples.

3 Defense Techniques

A variety of methods have been developed to defend against
neural Trojans. These techniques can be classified into four
categories: neural network verification, Trojan trigger detection,
compromised neural network restoration, and Trojan bypass
schemes. We outline each in turn.

3.1 Neural Network Verification

By verifying the efficacy of a neural network, any anomaly
created by a neural Trojan can be identified. However, due the
extremely specific triggers of most neural Trojans, neural verifi-
cation schemes must be quite exact to detect Trojans. Several
techniques have been proposed aiming at this goal, namely
[2, 22]. Baluta et al. develops PAC-style soundness guarantees
for neural networks [2]. To do so, a tool known as "NPAQ" was
developed which, given a set of trained neural networks (N) and
a property (P), determines how well P holds over N. Therefore,



if a neural Trojan is identified, NPAQ can be used to provably
verify that retraining removes the Trojan by ensuring that the
property which induces the Trojan, P, no longer holds over the
network, N.

He et al. takes a different approach to neural verification
known as Sensitive-Sample Fingerprinting [22]. In this work,
the authors develop a methodology to construct a small set
of "sensitive-samples" for a trained neural network that are
extremely sensitive to a model’s parameters. By querying the
network with these sensitive-samples and verifying their classi-
fication, one can dynamically verify that the tested network has
not been maliciously modified to include neural Trojans.

3.2 Trojan Trigger Detection

Similar to neural verification techniques, the specificity of
most Trojan triggers makes detection extremely challenging.
A wide array of techniques to do this have been proposed
[3, 7, 10, 16, 35]. Liu et. al showed that by using trained state-
of-the-art anomaly detection classifiers, neural Trojans triggers
could be detected albeit at the cost of a high false alarm rate
[33]. In [3, 7, 35], the authors detect Trojan triggers by evalu-
ating the effect of training inputs on the accuracy of a neural
model. In the most recent of these works, Baracaldo et al. uses
so-called "provenance data", essentially meta-data associated
with each data point, to group training data by the probability
of being either a Trojan trigger or poisonous input [3]. The
data in each grouping is then evaluated by comparing network
accuracy when training with and without each group. By doing
so, neural Trojans, which degrade the efficacy of a network,
can be identified and removed from the training data set. Other
methods, such as artificial brain simulation (ABS) [31], Reject
on Negative Impact (RONI) [35], and Probability of Sufficiency
(PS) [7], operate similarly. However, instead of using groups of
data points when evaluating network accuracy, RONI and PS
use individual data points. This approach sacrifices scalability
for precision.

Alternatively, Chen et al. proposes DeepInspect which per-
forms Trojan detection with minimal prior knowledge of the
model and no need for training data [10]. Deeplnspect detects
Trojans with 3 steps. 1) The neural model is inverted to recover
a substitute training dataset. 2) A conditional Generative Ad-
versarial Network (GAN) is used to reconstruct likely Trojan
triggers. 3) An anomaly detection measurement is calculated for
each identified trigger, which identifies the likelihood of a data
point belonging to a class other than the classification returned
by the neural network. Any highly anomalous data points are
likely to be neural Trojans and can be flagged for further review.

Gao et al. proposes STRong Intentional Perturbation (STRIP)
as a runtime Trojan detection scheme [15, 16]. STRIP duplicates
each neural input and applies a series of different strong pertur-
bations. The classification entropy caused by the set of strong
perturbations applied to each input is then measured. Any input
which retains the same classification, regardless of the strong
perturbation applied, is extremely likely to be a Trojan trig-
ger. These inputs can be flagged for inspection. On the other
hand, inputs displaying a degree of classification variance when
strongly perturbed are likely to be benign.

Kolouri et al. introduces the concept of Universal Litmus
Patterns (ULPs) to detect Trojan attacks against Convolutional

Neural Networks (CNNs) [25]. ULPs are basically optimized
input images for which a network’s output can be used as an in-
dicator to classify the network as clean or contains Trojans. This
approach enables a fast Trojan detection mechanism without
requiring access to any training data.

Xu et al. proposes a novel framework called Meta Neural Tro-
janed model Detection (MNTD) which uses meta neural analysis
techniques to detect Trojans[48]. Two techniques are presented
to train a meta-classifier are presented: one-class learning which
fits a detection meta-classifier using only benign neural net-
works and jumbo learning which approximates a general distri-
bution of Trojaned models and samples a “jumbo” set of such
models to train a meta-classifier.

Xiang et al. outlines an unsupervised anomaly detection (AD)
methodology of Trojans in DNN image classifiers [47]. Such
a technique aims to detect Trojans in the post-training phase
where the defender doesn’t have access to the poisoned train-
ing set, but only possesses the trained classifier itself and clean
(unpoisoned) examples from the classification domain. The pro-
posed AD involves learning the minimum size perturbation
required to induce the classifier to misclassify examples from
one class to another.

3.3 Restoring Compromised Neural Models

In this section we detail two types of approaches for restoring

compromised neural models: model correction and trigger-based
Trojan reversing. The former includes generic methods to mod-
ify neural networks in order to eliminate Trojan functionalities
whereas the latter first finds Trojan trigger and patch the neural
networks accordingly.
3.3.1 Model Correction Retraining and pruning techniques to
correct Trojan-infected neural networks have been explored.
Note that retraining a model from scratch is not considered
feasible for an MLaaS user because otherwise she would have
trained the neural model all by herself without oursourcing
to MLaaS. Liu et. al. propose retraining the Trojan-infected
neural network on a small subset of properly labeled training
data to render Trojans ineffective [33]. This has the advantage
of reduced expense compared to the original training of the
network.

Pruning a neural network removes less important neurons
from a network. A pruned neural network has a reduced compu-
tational complexity and size compared to the original network.
Zhao et. al. proposed a hardening scheme against neural Trojan
attack by pruning a neural network such that accuracy is not
significantly affected but increases the difficulty of adding mali-
cious functionality to the trained network significantly [53]. A
model with most of its neurons pruned demonstrates the most
resilience against Trojan infection attack as pruning works to
remove extra capacity in a network. Liu et. al. showed that prun-
ing may fail to defend against Trojan infection attacks if the
attacker is aware of the pruning defense [29]. By pruning a
trained network before training on Trojan trigger inputs, activa-
tions for clean and malicious inputs can be mapped to the same
neurons. They also demonstrate that fine tuning and retraining
is not effective against Trojans since clean input activations
generally do not depend on backdoor neurons. They propose
instead Fine-Pruning to restore a Trojaned neural network. By
pruning and then fine-tuning a neural network, a pruning aware



attack becomes ineffective. Any neuron that contributes to the
Trojan’s functionality in a pruning aware attack is mapped to
a neuron that is used by clean inputs as well. Fine-tuning can
then eliminate the Trojans in these mixed neurons.

3.3.2 Trigger-based Trojan Reversing InNeural-Cleanse, Wang
et al. first detect and identify backdoor triggers by using an op-
timization scheme to find the smallest perturbation required to
transform inputs of all classes to a target class (e.g. the smallest
set of pixels required) [46]. A perturbation is likely a backdoor
trigger if it is small. The Trojaned network can be patched using
the reverse engineered trigger by retraining the network on le-
gitimate inputs with the trojan applied to remove the backdoor.
In TABOR [21], Guo et. al. demonstrate that Neural-Cleanse
fails when backdoors can take on variable size, shape, and lo-
cation. They propose a Trojan detection method which uses a
non-convex optimization-theoretic formulation guided by ex-
plainable Al and other heuristics to increase detection accuracy.

Chen et al. proposes a technique for Trojan removal in ad-
dition to a Trojan detection scheme [9]. Their work explores
Trojan detection through the observation of neuron activation
in the final hidden layer of a network. The authors demonstrate
that neural Trojan triggers exhibit a distinctly different pattern
of neuron activation compared to benign inputs in this layer.
This observation is then exploited for Trojan detection. Specifi-
cally, the authors propose flattening the final hidden layer, reduc-
ing its dimensionality, and then performing clustering. Based
on abnormal clustering characteristics, Trojan triggers can be
identified. Chen et al. then demonstrates exclusionary reclas-
sification, where the neural model is retrained excluding the
abnormal cluster, to remove an identified Trojan while retaining
accuracy.

3.4 Bypassing Neural Trojans

There have also been studies on ways to bypass neural Trojans
that are already present within a neural network. The methods
discussed below involve an input preprocessor, which removes
Trojan triggers in the input before the input is sent to the neural
network.

In [14], Doan et al. propose a framework dubbed “Februus” to
bypass input-agnostic trigger patterns in images. Here, the input
image gets passed through the Februus system, where Trojan
trigger patterns are found and removed before they are sent to
the neural network itself. The neural Trojans get neutralized
through a three-step process. First, there is visual explanation,
where the Trojan is detected using a logit score-based approach;
if the trigger is present, it will have the most impact on the
input’s classification into the targeted class. The Trojan is then
removed during masking, and lastly, the input is restored to a
benign image using an inpainting technique. This input cleans-
ing framework can act as a black-box between the input and the
neural network, without degrading the classification accuracy
of benign inputs.

Liu et al. [33] describe another input preprocessing technique
that uses an autoencoder. This autoencoder is a neural network
that is trained with legitimate input data only, which is placed
between the input and the compromised neural network. Its
operation involves minimizing the mean-squared error between
the training set images and the reconstructed images, so any

illegitimate inputs would be poorly reconstructed and thus not
trigger the Trojan.

Udeshi et al. presents a model agnostic framework called NEO
to detect as well as mitigate Trojan attacks in image classifier
models [45]. NEO mitigates Trojan attacks by determining the
correct prediction outcomes of the poisoned images and also
diminishes the stealthy nature of such attacks by reconstructing
the backdoor triggers.

4 Using Neural Trojans for Good

The idea of using ‘Trojans’ to protect the intellectual property
of neural networks is also explored. In [1], Adi et al. proposed a
backdoor-based neural network watermarking scheme to pro-
tect the neural network’s intellectual property. The Trojan’s
functionality is defined by a well known type of cryptographic
primitive called commitment schemes which is a way to send a
secret message to an exclusive receiver in a secure vault. Special
input samples are crafted to verify the watermark functionality
of the neural network. Similarly ideas have been proposed in
[20]. Shan et al. developed a trapdoor-based adversarial attack
detection scheme. In this scheme, the weights in the neural
network are tuned to make gradient-descent-based adversarial
example generation algorithms converge at the trapdoor ad-
versarial examples [41]. If the trapdoor examples are present
during the deployment of the neural network, the neural net-
work owner will know that an adversarial example attack has
been conducted.

5 Conclusion and Discussion

In this paper, we summarize both attack and defense tech-
niques of neural Trojans. Such attacks are often conducted by
untrusted parties in the machine learning supply chain such as
the MLaaS provider and are of real concern to any end customer
of MLaaS.

Most of the research in this field was done in the last 3 years,
and the battle between the neural Trojan attacker and defender
is likely to continue. Moving forward, a defense solution against
neural Trojans with high success rate, low false alarm, and low
complexity must be developed in order to restore the trust of
the MLaaS supply chain. Existing defense techniques often rely
on training a separate machine learning model to detect, restore,
or bypass neural Trojans (or its triggers). This requires signifi-
cant computation effort on the defender’s side and diminishes
the benefit of MLaaS (which is offloading computation to the
service provider). An approach that might be worth considering
is using hardware. For example, there has been a huge body
of work on logic obfuscation (which is well surveyed in [8]).
Such techniques makes circuit functionality dependent on a key,
hence the output may be incorrect if the correct key is not given.
This kind of techniques may also be developed to defend neural
Trojans. The authors hope that this paper will make the readers
be aware of the threat of neural Trojans and have a comprehen-
sive overview of the current status of this threat. This would be
an important step towards solving the problem.
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