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Abstract—Multimedia applications for machine learning mod-
els are characterized by the fusion of multiple modalities of data.
In this work, we highlight the trust and robustness challenges
of machine learning that arises from data fusion. To do so,
we present three case studies demonstrating how multimedia
applications exacerbate existing challenges of trustworthy and
robust machine learning. For the first case study, we investigate
the impact of fusion depth on the robustness of multi-modal
machine learning models, observing that model architecture
could impact robustness. For the second case study, we investigate
the impact of fusion modality on the robustness of multi-modal
machine learning models, observing that fusion models are only
as robust as their most susceptible modality. For the third case
study, we explore the impact of weight quantization techniques
on the robustness of multi-modal models, observing the need
for modality-based quantization schemes. Through these case
studies, we hope to shed light on the unique trust and security
challenges that arise in machine learning models when applied in
multimedia applications and offer insights to fortify such systems
in real-world scenarios.

Index Terms—Machine Learning for Multimedia, Multi-Modal
Fusion, Neural Network Robustness

I. INTRODUCTION

Multimedia enriches machine learning applications by com-
bining diverse modalities of data, such as text, image, video,
and audio, that enhances a model’s ability to understand and
interpret complex real-world scenarios. This is supported by
a large body of research indicating that the performance of
machine learning models in many tasks substantially improves
through the use of multiple data modalities [1]. Examples of
such tasks include object tracking [2], image processing [3],
intrusion detection [4], and others [5]. Similarly, the fusion of
multiple modalities has been shown to improve the robustness
of machine learning models [6], [7]. As a result, multimedia
fusion is frequently used to enhance machine learning.

Consequently, the development of machine learning meth-
ods that operate on data from multiple modalities has emerged
as a key research area [1]. The majority of the work in this
space explores the use of multimedia through the lens of
machine learning. This can be observed through the extensive
study of different machine learning architectures to perform
fusion (e.g., signal, feature, and decision fusion) [1], the
adaptation of existing attacks on machine learning to multi-
modal models [8]–[10], or the use of machine learning to
address conventional challenges in multimedia (e.g., media
analysis [11] or captioning [12]). While these avenues of
research have driven substantial innovation and improvement

in both multimedia and machine learning, there has been
limited exploration of such problems through the lens of a
multimedia problem, emphasizing particular aspects of the
data modalities on the performance of the machine learning
model. This motivates our work.

In this work, we aim to explore multi-modal fusion through
the lens of the specific multimedia data being operated on.
Based on this, we identify three open questions regarding the
trust and robustness of multimedia fusion for machine learning
applications and highlight their relevance with a corresponding
case study with the goal of promoting further exploration by
the research community. We pose each of these questions
along with a brief summary of related work below.

First, we consider the question: Does fusion depth (e.g.,
signal, feature, and decision fusion) in a machine learning
model impact robustness, particularly to single-modal attacks?
Prior work has found accuracy improvements arising from
earlier data fusion [13], however, they do not consider the
corresponding impact on robustness. For this case study, we
explore the impact of the depth of the fusion of multiple
modalities on the adversarial robustness of neural networks
against single and multi-modal attacks.

Second, we consider the question: Can the inclusion of data
modalities that are easy to perturb make a model less robust to
adversarial attacks? While prior work has demonstrated single
modal attacks on fusion models [14], [15], they generally
recognize and frame fusion as a defensive measure against
attacks that improves robustness [16]. For this case study, we
consider if a fusion model can be less robust than its un-fused
counterpart to Projected Gradient Descent (PGD) [17] and Fast
Gradient Sign Method (FGSM) [18] attacks.

Finally, we consider the question: Does the impact of quan-
tization on model robustness differ by data modality? In neural
networks, quantization is a technique employed to compress a
model to require less resources and run faster. The multimedia
community has long recognized that different data modalities
can be subjected to different types and levels of compression
[19]. Prior work has shown that the impact of quantization on
the robustness of neural networks is complex, resulting in both
increases and decreases depending on the scenario [20]. This
suggests that different data modalities may lead to different
adversarial robustness under quantization. For this case study,
we consider how different levels of quantization impact attack
susceptibility for two different modalities fused modalities. We
summarize the contributions of the work as follows:



• We observe that fusion strategy impacts adversarial ro-
bustness to single-modal attacks and that this result
appears to differ by data modality. This suggests that the
available data modalities may be relevant when selecting
a fusion strategy for multimedia applications.

• We observe that the robustness of multi-modal neural
networks is limited by the easiest to attack modality,
differing from the conventional view that multi-modal
fusion inherently improves robustness.

• We observe that robustness to adversarial perturbations
differs not only by data modality, but also by the level of
quantization applied to the modality. This suggests that
quantization in multimedia applications should consider
quantization by data modality, possibly adopting different
strategies or levels of precision for each.

II. PRELIMINARIES

A. Multi-Modal Fusion in Machine Learning Applications

Multi-modal fusion in machine learning is the concept of
merging multi-modal data sets composed of data obtained
from different sensors with the goal of predicting an out-
put value: a class (e.g., 0 to 9 numbers), or a continuous
value (e.g., similarity between handwritten numbers). Three
primary advantages of multi-modal fusion are driving interest
in machine learning [21]. First, having access to various
modalities could help us gather complementary data, which
is not always visible when using just one modality. Second,
multi-modal fusion produce more robust machine learning
models if there are several modalities available for observing
the same phenomenon. Third, even if one of the modalities is
absent, a multi-modal system can still function. For instance,
multi-modal fusion models can still identify emotions from a
person’s facial expressions even when they are silent [22].

In this work, we separate neural network architectures that
perform multi-modal fusion into three classes based on the
work in [1], [23]: early (i.e., signal), intermediate (i.e., feature),
and late (i.e., decision) fusion. Early (i.e., signal) fusion is
applied before entering a recognition network. It converts
unprocessed data into an intermediate, more condensed form.
Intermediate (i.e., feature) fusion is fusion that occurs inside
recognition models. To create a new representation that is more
expressive than the individual representations from which it
originated, this fusion combines the characteristics that set
each type of data apart [23]. Late (i.e., decision) fusion is
a strategy that happens outside of the classification models
using single modality. It creates new selections that are more
accurate and dependable by combining the choices made by
each classifier. When compared to using a single representation
alone, these fusion methods can produce strong results [13].

B. Security, Privacy, and Trust in Multimedia

Multimedia systems that leverage state-of-the-art deep
learning techniques are vulnerable to a number of adversarial
attacks which can compromise the security, performance,
privacy, and overall trustworthiness of the system and its users.
Evasion, poisoning, and privacy attacks are three categories

that have received significant research attention over the
past several years [24]–[26]. Evasion attacks exploit small-
margin decision boundaries by perturbing legitimate inputs
just enough to move them to a different decision region in the
input space. Poisoning attacks typically use modified labeling
or addition of training data to reduce the margins of decision
boundaries or insert new boundaries that cause misclassifica-
tions and/or make evasion attacks easier to perform. Privacy
attacks steal information about the machine learning model
(parameters, etc.) or training data through statistical analysis
of query results or side channel information.

We are particularly interested in the robustness of multime-
dia systems to evasion attacks, which have been demonstrated
on deep learning models for multiple modalities, including
image [27], audio [28], text [29], physiological data [30], and
more. The goal of an evasion attack can be expressed as an
optimization problem, where, for some model Π, a correctly-
classified input u, usually from the test or training set, is
perturbed by r∗ to maximize a loss function L and cause Π’s
classification of u′ = u+ r∗ to be different from u’s ground
truth label. Specific choices of the optimization procedure used
and the constraints placed on r∗ lead to different specific
attack variants [26]. Recently, there has also been considerable
interest in the impacts of machine learning model compression
techniques on their robustness to these types of adversarial
attacks. For example, parameter quantization, which is a
popular compression technique [31], was recently shown to
either improve or degrade the robustness of neural networks
depending on the strength of the attack (length of r∗) [20].

C. Threat Model and Scope

In this work, we consider a white-box scenario in which
the attacker has complete knowledge of the model being
evaluated, including all model parameters. This threat model
is commonly adopted in prior work exploring adversarial
attacks on fusion models [7], [9], [15]. Despite the explicit
consideration of a white-box attacker, we aim to make the
corresponding preliminary analysis and observations drawn
from each case study to be largely attacker-agnostic.

III. MOTIVATION

Given the widespread adoption of multi-modal machine
learning for critical decision-making tasks (e.g., autonomous
driving, healthcare, predictive maintenance, etc. [2]–[5]), there
is a strong need to understand the trust and robustness
ramifications of multimedia on machine learning models. If
we follow the conventional wisdom that more data produces
better models, then incorporating multiple data modalities
together is a clear benefit. However, this conventional wisdom
overlooks so-called catastrophic fusion, which has long been
recognized by multimedia researchers [32]. In this work, we
aim to draw on past research in the multimedia community
to identify similar scenarios where the use of multimedia
may lead to non-intuitive outcomes with a focus on trust and
robustness. For each scenario, we present a case study and
suggest future research directions based on our observations.



Specifically, we consider the following three scenarios and
present a corresponding case study for each:
• Case Study 1: How does data fusion architecture impact

model robustness, particularly against single-modal attacks?
• Case Study 2: Can the inclusion of easy to perturb data

modalities make a model less robust to attacks?
• Case Study 3: Does the impact of quantization on the model

robustness differ by data modality?
To begin, we outline the dataset and machine learning

models used to perform each case study presented in the work.

A. Dataset

To evaluate multi-modal fusion models, we use the written
and spoken digits dataset for multi-modal learning [33]. It is a
constructed dataset based on existing written and spoken digits
datasets. The written digits dataset is the original MNIST
dataset [34] including 70000 digit images. The spoken digits
dataset was extracted from Google Speech Commands [35].
38908 utterances of the ten digits are associated with written
digits of the same class. All spoken digit data was subjected
to pre-processing by extracting the Mel Frequency Cepstral
Coefficients (MFCC) with standardization and normalization.

B. Multimedia Fusion Architecture for Case Studies

We selected a TinyML architecture based on ResNet v1
from the MLPerf Tiny Deep Learning benchmark [36]. This
architecture was chosen for two reasons. 1) TinyML is be-
coming increasingly prevalent, particularly in privacy-sensitive
applications where trust and robustness are critical, because it
does not require data to move off-site [37]. 2) The use of a
smaller architecture allows us to train more models for each
case study and aggregate results. Using the ResNet v1 archi-
tecture as a baseline, we generated three fusion architectures
using different approaches from prior art [1], [23]. We depict
each model and label them as 1 , 2 , and 3 in Figure 1:

Fig. 1. Overview of case study 1.

1 Early Fusion Model: For this model, written digit image
and spoken digit MFCC are concatenated prior to being used
as input to the model. Both the image and audio data are
transformed to a 28 by 28 matrix and concatenated. The extra
part of audio data to make the 28 by 28 shape is filled with
zeros. Likewise, the shape of the audio data is changed into 28
by 28 for intermediate and late fusion model for consistency.

2 Intermediate Fusion Model: For this model, we em-
ployed two residual blocks from the original ResNet8 v1 for
each uni-modal stream. After processing each modality, these
results are concatenated (i.e., fused) and fed into the remaining
layers of the model, which has one residual block and a fully-
connected layer at the end.

3 Late Fusion Model: For this model, two separate
ResNet8 v1 models are used for each modality (i.e., one for
image, one for audio) with the final fully-connected layer
removed. The outputs of each model are concatenated (i.e.,
fused) and fed into a fully-connected layer.

C. Adversarial Attacks

To assess the robustness of our fusion models, we employed
two adversarial attacks, PGD [17] and FGSM [18]. FGSM is
an algorithm that generates an adversarial example using the
gradient of a Neural Network. Since the parameter θ of the
learned model can be treated as a constant, the loss is increased
by adjusting the input data x. Unlike FGSM, PGD iterates the
FGSM process over and over to create strong perturbations. As
shown in Figure 2, the hyperparameter ϵ dictates the magnitude
of the adversarial perturbation applied to the input signals. The
ϵ value for PGD and FGSM was swept from 0.01 to 0.1 in
increments of 0.01 in all experiments. For all experiments, we
used FGSM and PGD algorithms from CleverHans [38].

Fig. 2. An overview of the FGSM attack proposed in [18].

IV. CASE STUDY 1: FUSION ARCHITECTURE AND
ADVERSARIAL ROBUSTNESS

For this case study, we explore the question: How does
data fusion architecture impact neural network robustness,
particularly against single-modal attacks? To do so, we launch
our adversarial attacks, PGD [17] and FGSM [18], against
our three fusion models outlined in Section III-B that each
employ a different fusion methodology. Specifically, as shown
in Figure 1, the following experiments were performed on
fusion models 1 , 2 , and 3 . 1) A single-modal attack was
performed by adding adversarial perturbations to only the
image input or the audio input for each fusion model. 2)
A multi-modal attack was performed by adding adversarial
perturbations to both the image and audio inputs of each
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Fig. 3. Results of attacks on both modalities.
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Fig. 4. Results of attacks on image input.
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Fig. 5. Results of attacks on audio input.

model simultaneously. To serve as a baseline, two single-
modal ResNet8 v1 models were trained using only the image
or audio data and attacked using PGD and FGSM as well. For
all experiments, the ϵ value for PGD and FGSM was swept
from 0.01 to 0.1 in increments of 0.01. The results of these
experiments are contained in Figures 3, 4, 5, and 6.

A. Analysis of Case Study

Figure 6 shows the accuracy of two single-modal
ResNet8 v1 models that were trained using only the image
or audio modality after FGSM and PGD attacks. Based on
these results, attacking the audio input degrades the accuracy
more than attacking the image input does, regardless of attack
type. Figure 5 contains the resulting accuracy of the three
fusion models after a single-modal FGSM and PGD attack on
only the audio input. At lower epsilon values, the single-modal
ResNet8 v1 model trained only on audio inputs exhibited a
sharp accuracy degradation, dropping to ∼ 60% accuracy at
the smallest tested ϵ = 0.01. Comparatively, all fusion mod-
els exhibited above 60% accuracy against even multi-modal
attacks until ϵ = 0.04. Hence, fusion appears to improve the
robustness of the model to single-modal adversarial attacks,
regardless of architecture. This observation holds regardless
of the considered modality, attack, or fusion architecture.

Next, we consider the relative impact of single and multiple
modality attacks on each fusion model. Figure 3 contains the
multi-modal attack results. When compared to the image-only
and audio-only attack results contained in Figures 4 and 5,
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Fig. 6. Accuracy degradation from attacks on single-modal models.

multi-modal attacks resulted in greater accuracy degradation.
This is unsurprising because the multi-modal attacks could
perturb both input modalities, making them a super-set of the
single-modal attack strategies. This result held regardless of
the fusion architecture evaluated, suggesting that single-modal
attacks are less effective than multi-modal attacks.

Finally, we consider the impact of fusion architecture on
model robustness. For attacks on the image modality contained
in Figure 4, the late fusion model appears to be more robust
than either other fusion strategy (i.e., early and intermediate).
For attacks on the audio modality contained in Figure 5,
the intermediate fusion model appears more robust against
the PGD attack than the early and late fusion models. This
indicates that fusion architecture may have some impact on
model robustness to single-modal attack strategies.

B. Discussion and Future Research Directions

The results of the case study suggest that fusion architec-
ture may impact the robustness of machine learning models.
Previous research has shown that early fusion can enhance
accuracy [13]. However, our findings suggest that early fusion
does not provide similarly clear-cut improvements against
single-modal adversarial attacks. We also observed differences
in the robustness of each fusion strategy by the attacked
data modality. This suggests that it may be advantageous to
consider the specific data modalities being used when selecting
the fusion architecture. Given the growing use of multimedia
in critical machine learning applications [2]–[5], understand-
ing the implications of fusion depth on model robustness,
especially against single-modal attack strategies, is important.
Hence, further research into how fusion architecture affects
adversarial robustness in multimedia models is warranted.

V. CASE STUDY 2: MODALITY SELECTION AND FUSION
MODEL ROBUSTNESS

For this case study, we explore the question: Can the
inclusion of data modalities that are easy to perturb make a
model less robust to adversarial attacks? To evaluate this, we
compare the adversarial robustness of a single-modal model
using only the image modality to a multimedia model fusing
both image and audio data with an early fusion approach.
This is illustrated in Figure 7. In such a scenario, conventional
wisdom assumes that the multimedia model will exhibit more



Fig. 7. Overview of case study 2.
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Fig. 8. Model accuracy after single and multi-modal adversarial attacks.

robustness to adversarial attacks. However, the prior case
study indicates that the audio modality is more susceptible to
adversarial perturbation. To assess this, we launch PGD and
FGSM attacks against our single-modal and multimedia fusion
models. For the multimedia model, both single-modal attacks
on the image modality and multi-modal attacks on both image
and audio modalities were considered.

A. Analysis of Case Study

Figure 8 shows the relevant data extracted from the graphs
in Figures 3, 4, and 6. Figure 8 includes multi-modal attacks on
three fusion models, single-modal attacks to the image input
on three fusion models, and a single-modal attack to the image
input on the baseline (i.e., without fusion) model. Each data
point is the average of the results of both evaluated attack
strategies, FGSM and PGD. Single-modal attacks on the three
fusion models do not degrade accuracy more than a single-
modal attack does on the baseline model. This suggests that
introducing audio fusion makes the model more robust against
single-modal image attacks.

However, when compared the baseline model, multi-modal
attacks on the three fusion models degrades accuracy more
than the single-modal attack does on the baseline model.
This connects to the result that introducing audio, which
based on case study 1 is a modality more susceptible to
adversarial attacks, results in a less robust model when both
modalities can be attacked. Therefore, this indicates a counter-
intuitive scenario, where introducing an additional comple-
mentary modality actually leads to a less robust model overall
if both modalities can be perturbed.

B. Discussion and Future Research Directions

The results of this case study highlight the importance of
considering the relative adversarial robustness of candidate
data modalities in multimedia fusion. Specifically, when adapt-
ing a single-modal model into a multimedia fusion model, in-
corporating a data modality with lower adversarial robustness
(i.e., audio in this case) may compromise the overall robust-
ness of the fusion model. This serves as a counterexample
to the conventional wisdom that adding complementary data

enhances model robustness [6], [7]. This case study suggests
a more complex scenario where the inclusion of additional,
complementary data modalities does not always lead to a more
robust multimedia model.

This implies that the robustness of fusion modalities is
a critical factor in the deployment of neural networks in
multimedia applications. It points to the need for further
research into how the robustness of individual modalities
affects the overall robustness of a multimedia model. Based on
this, we propose two potential factors that could impact model
robustness in multimedia settings as future research directions:
• The adversarial robustness of a candidate modality. Intro-

ducing a new modality that is robust to perturbations can
enhance the overall model’s resistance to adversarial attacks,
including multi-modal ones. For example, in our case study,
if the original model utilized only audio, adding the image
modality, which exhibited higher robustness, would have
improved the model’s overall defense against against both a
single and multiple modalities. If this scenario generalizes,
one could strive to fuse data modalities that are resistant to
adversarial perturbation to improve model robustness.

• The relative difficulty of performing adversarial perturba-
tion to a candidate data modality. In scenarios where only
single-modal attacks are feasible, our case study suggests
that incorporating this modality may enhance overall model
robustness. This finding implies that fusing even a less
robust modality may still be beneficial if attacks on it
are sufficiently difficult. For instance, tasks like object
detection, which typically rely on image data, are vulnerable
to attacks using small, strategically placed patches [39].
However, by integrating extra data modalities, such as Lidar,
which requires a complex physical setup to attack [40], the
robustness of the model could be improved. This is because
multi-modal attacks would be more challenging to execute.

VI. CASE STUDY 3: QUANTIZATION AND FUSION MODEL
ROBUSTNESS

For this case study, we explore the question: Does the
impact of quantization on model robustness differ by data



Fig. 9. Overview of case study 3.

modality? To evaluate this, we quantized our mulitmedia
model employing early fusion to {6, 7, 8, 9} bits. For each
quantized model, we launched a single-modal attack, applying
adversarial perturbation to only the image or audio inputs
using PGD [17] and FGSM [18]. The resulting accuracy was
aggregated to determine whether quantization had disparate
impact on model robustness between the image and audio
modality. Figure 9 contains an overview of this experiment.

A. Quantization Technique

To quantize a model, we performed post training quanti-
zation using min-max scaling [41]. To perform n-bit quanti-
zation, the minimum and maximum parameter value for each
layer was used to determine the range for the quantization of
each layer. This range was then sliced into 2n discrete values
and all layer parameters were rounded to the nearest one.

B. Analysis of Case Study

Figure 10 displays the ratio of quantized and un-quantized
model accuracy after single-modal FGSM and PGD attacks.
This ratio is used to isolate the reduction in accuracy caused
by quantization. For both the FGSM and PGD attack, a single-
modal attack on the image input of the quantized models
reduces the inference accuracy more than a single-modal
attack on the audio input of the quantized models. However,
we note that this result is more pronounced for the FGSM
attack and higher ϵ values. Based on this result, quantization
appears to degrade the robustness of the image modality more
than the audio modality. This suggests that quantizing different
modalities may result in a disparate impact on robustness.

C. Discussion and Future Research Directions

The results of this case study indicate that quantization
impacts model robustness differently across data modalities.
Specifically, quantization reduced adversarial robustness in the
image modality more than in the audio modality. Therefore,
just as there are modality-dependent compression algorithms
for signal processing (e.g., JPEG), our findings suggest that
similar modality-dependent quantization algorithms could ben-
efit multimedia machine learning applications. Furthermore,
modality-dependent, mixed-precision quantization approaches
may also be advantageous. Existing algorithms for mixed-
precision quantization, such as [42], could be adapted to tailor
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Fig. 10. Accuracy of quantized model after single-modal FGSM/PGD attack.

quantization strategies to the specific characteristics of each
data modality. This area of research is particularly promising
as edge-deployments of machine learning, where quantization
is common, are predicted to substantially increase [37].

VII. DISCUSSION OF LIMITATIONS

The case studies presented in this work provide small,
intuitive examples to highlight interesting concepts at the
intersection of multimedia, machine learning, and security.
While we have made observations based on these case studies,
they are insufficient to draw any definitive conclusions for
the considered research questions. Rather, each case study
is presented as anecdotal data to showcase how aspects of
multimedia may impact machine learning in a non-intuitive
fashion with the goal of highlighting possible directions for
future research on multimedia.

VIII. CONCLUSION

In this work, we presented three case studies exploring
the impact of multimedia on machine learning applications.
Each case study indicates that multimedia applications may
exacerbate existing challenges of trustworthy and robust ma-
chine learning. For the first case study, we observe that the
fusion architecture of multi-modal machine learning models
(i.e., early, intermediate, or late fusion) greatly impacts sus-
ceptibility to adversarial attacks. For the second case study,
we observed that the use of fusion can in fact degrade the
overall robustness of a model to attacks. For the third case
study, we observed that quantization impacted the robustness
of machine learning models differently based on robustness.
Alongside each case study, we identified candidate areas of
future research on trustworthy and robust machine learning
for multimedia with the hope of shedding light on the unique
trust and security challenges that arise when machine learning
is applied to multimedia applications.
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