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ABSTRACT
Logic locking has been proposed as strong protection of intel-

lectual property (IP) against security threats in the IC supply

chain especially when the fabrication facility is untrusted. Such

techniques use additional locking circuitry to inject incorrect be-

havior into the digital functionality when the key is incorrect. A

family of attacks known as "SAT attacks" provides a strongmath-

ematical formulation to find the correct key of locked circuits.

Many conventional SAT-resilient logic locking schemes fail to

inject sufficient error into the circuit when the key is incorrect:

there are usually very few (or only one) input minterms that

cause any error at the circuit output [18, 20–22]. The state-of-

the-art stripped functionality logic locking (SFLL) [24] technique
provides a wide spectrum of configurations which introduced

a trade-off between security (i.e. SAT attack complexity) and

effectiveness (i.e. the amount of error injected by a wrong key).

In this work, we prove that such a trade-off is universal among

all logic locking techniques. In order to attain high effectiveness

of locking without compromising security, we propose a novel

secure and effective logic locking scheme, called Strong Anti-

SAT (SAS). SAS has the following significant improvements over

existing techniques. (1) We prove that SAS’s security against

SAT attack is not compromised by increases in effectiveness. (2)
In contrast to prior work which focused solely on the circuit-

level locking impact, we integrate SAS-locked modules into an

80386 processor and show that SAS has a high application-level

impact. (3) SAS’s hardware overhead is smaller than that of

existing techniques.
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1 INTRODUCTION
Due to the increasing cost of maintaining IC foundries with

advanced technology nodes, many chip designers have become

fabless and outsource their fabrication to off-shore foundries.

However, such foundries are not under the designer’s control

which puts the security of the IC supply chain at risk. Untrusted

foundries are capable of malicious activities including hardware

Trojan insertion, piracy and counterfeiting, overbuilding, etc.

Many design-for-trust techniques have been studied as counter-

measures among which logic locking has been the most widely

studied [3]. A logic locked circuit requires a secret key input

and the correct key is kept by the designer and not known to

the foundry. The functionality of the circuit is correct only if

the key is correct. After the foundry manufactures the locked

circuit and returns it to the designer, the correct key is applied

to the circuit by connecting a tamper-proof memory containing

the key to the key inputs. This process is called activation. Over
the years, different types of logic locking mechanisms have been

suggested. Initially, locking involved inserting XOR/XNOR gates

in a synthesized design netlist [11]. Later, techniques based on

VLSI testing principles have been outlined to improve logic lock-

ing schemes by manifesting high corruption at the output bits

when an incorrect key is applied [9, 10].

The Boolean satisfiability-based attack, a.k.a. SAT attack [16]

was a game changer and became the basis of many variants

[4, 13, 14]. SAT provids a strong mathematical formulation to

find the correct locking key of a logic locked IC which prunes

out wrong keys in an iterativemanner. In each iteration, an input

(called the Distinguishing Input, or DI) is chosen by the SAT

solver and all the wrong keys that corrupt the output of this DI

are pruned out. All wrong keys are pruned out when no more DI

can be found. Point function (PF)-based logic locking, including

SARLock [21] and Anti-SAT [18, 20], force the number of SAT

iterations to be exponential in the key size by pruning out only a

very small number of wrong keys in each iteration. However, PF-

based locking necessitates that there are very few (or only one)

input minterms whose output is incorrect for each wrong key.

Hence the overall error rate of the locked circuit with a wrong

key is very small. This disadvantage is captured by approximate

SAT attacks such as AppSAT [13] and Double-DIP [14]. These

attack schemes are able to find an approximate key (approx-key)
which makes the locked circuit behave correctly for most (but

not all) of the input values.

More recently, Yasin et al. proposed stripped functionality
logic locking (SFLL) which allows the designer to select a set

of protected input patterns that are affected by almost all the

wrong keys while other input patterns are affected by very few

wrong keys [24]. However, when the number of protected pat-

terns increases, SAT attacks need significantly fewer iterations

to find the correct key. Essentially, SFLL creates a fundamental

trade-off between security (i.e. SAT attack complexity) and ef-
fectiveness (i.e. the amount of error injected by a wrong key).

This trade-off is problematic. On the one hand, if only very few

input patterns are protected, a wrong key may not inject enough

error into the circuit and useful work may still be done using the

chip, rendering locking ineffective. On the other hand, having

more protected input patterns will compromise the circuit’s

security against SAT attack. Addressing this dilemma is the

main theme of our paper.

We propose Strong Anti-SAT (SAS) to address the challenges

in achieving high effectiveness without sacrificing security. SAS

ensures that, given any wrong (including approximate) key,

the error injected by locking circuitry will have a significant

application-level impact. Additionally, SAS is provably resilient

to SAT attacks (i.e. requiring exponential time). This is a sub-

stantial improvement over the limitations posed by SFLL. The

contribution of this work is as follows.

(1) We prove the fundamental trade-off between security and ef-
fectiveness which is applicable to any logic locking scheme.

(2) We demonstrate the inability of existing locking techniques

to secure hardware running real-world workloads due to

such a trade-off. We show that, when the longest combina-

tional path (i.e. the multiplier) in a 32-bit 80386 processor



Figure 1: The targeted attack model of logic locking
is locked using SFLL, the processor fails to simultaneously

have high SAT complexity and high application-level im-

pact on PARSEC benchmarks [1].

(3) We propose Strong Anti-SAT (SAS) to address this challenge.
In SAS, a set of input minterms that have higher impact

on the applications are identified as critical minterms. We

design the locking infrastructure of SAS such that given a

wrong key, the critical minterms are more likely to intro-

duce error in the circuit and hence result in an application-

level error. We also prove that the SAT complexity is expo-

nential in the number of key bits and does not deteriorate

when the number of critical minterms increases. This is a

substantial improvement over SFLL.

(4) Experiment results show that, when SAS and SFLL have

the same effectiveness, SAS achieves higher security and

lower hardware overhead than SFLL.

2 BACKGROUND
2.1 Threat Model
Fig. 1 illustrates the threat model we consider which is consis-

tent with the latest papers in the logic locking field [5, 13, 17–

19, 21, 24]. The attacker can be either an untrusted foundry

or an untrusted user who has the ability to reverse engineer

the fabricated chip, obtaining the locked gate-level netlist. The

attacker is considered to have the following resources:

(1) The locked gate-level netlist of the circuit under attack. This
can be obtained by reverse engineering theGDS-II file (which

the foundry has) or a fabricated chip (which can be done by

a capable end user).

(2) An activated chip. The attacker is considered to own an

activated chip (i.e. the one loaded with the correct key) since

such a chip can be purchased from the open market.

In general, logic locking research does not assume that the

attacker is able to insert probes into the activated circuit, i.e. to
observe the intermediate values. This is because protection

schemes (e.g. analog shield [8]) can counter probing attacks.

The Boolean satisfiability-based attack, a.k.a. SAT attack is a

strong theoretical formulation to find the correct key of a locked

circuit. In the context of the SAT attack, we use the Conjunctive
Normal Form (CNF): C( ®X , ®K, ®Y ) to characterize Boolean satisfi-

ability: C( ®X , ®K, ®Y ) = TRUE if ®X , ®K , and ®Y satisfy ®Y = FL( ®X , ®K),
where FL stands for the Boolean functionality of the locked

circuit. C( ®X , ®K, ®Y ) = FALSE otherwise. SAT attacks run itera-

tively and prune out incorrect keys in every iteration. The attack

consists of the following steps:

(1) In the initial iteration, the attacker looks for a primary input,

®X1, and two keys, ®Kα and ®Kβ , such that the locked circuit

produces two different outputs ®Yα and ®Yβ :

C( ®X1, ®Kα , ®Yα ) ∧C( ®X1, ®Kβ , ®Yβ ) ∧ (®Yα , ®Yβ ) (1)

®X1 is called the Distinguishing Input (DI).
(2) The DI, ®X1, is applied to the activated circuit (the oracle) and

the output ®Y1 is recorded. Note that
®Kα , ®Yα , and ®Kβ , ®Yβ are

not recorded. Only the DI and its correct output are carried

over to the following iterations.

(3) In the ith iteration, a new DI and a pair of keys, ®Kα and

®Kβ , are found. The newly found ®Kα and ®Kβ should produce

correct outputs for all the DIs found in previous iterations.

To this end, we append a clause to Eq. (1):

C( ®Xi , ®Kα , ®Yα ) ∧C( ®Xi , ®Kβ , ®Yβ ) ∧ (®Yα , ®Yβ )

i−1∧
j=1

(C( ®X j , ®Kα , ®Yj ) ∧C( ®X j , ®Kβ , ®Yj ))
(2)

In this way, all the wrong keys that corrupt the output of

previously found DIs (i.e. the output is different from that

of the activated chip) are pruned out from the search space.

(4) SAT solves Eq. (2) repeatedly until no more DI can be found,

i.e. Eq. (2) is not satisfiable any more.

(5) In this case, there is no more DI. The output of the SAT

attack is a key ®K that produces the same output as the ac-

tivated circuit to all the DIs, which can be expressed using

the following CNF:

λ∧
i=1

C( ®Xi , ®K, ®Yi ) (3)

where λ is the total number of SAT iterations.

2.2 Logic Locking
Multiple logic locking schemes have been proposed to thwart

the SAT attack [18, 20, 21, 23, 24]. There are twoways tomitigate

the SAT attack: one is to increase the time for each SAT itera-

tion and the other is to increase the number of SAT iterations.

The former requires either AES blocks [23] or reconfigurable

logic [7], which is impractical for most circuits. The other ap-

proach is to exponentially increase the number of SAT iterations.

This approach is also not perfect because a locking scheme must

be rather ineffective to improve security. This is the case for

Anti-SAT [18, 20], SARLock [21], and and TTL [22]. All these

techniques are vulnerable to the approximate SAT attacks (such

as AppSAT [13] and Double-DIP [14]).

The state-of-the-art, stripped functionality logic locking (SFLL)
[24], explores the trade-off between security and effectiveness.

SFLL comprises of two parts: a functionality stripped circuit

(FSC) and a restore unit (RU). The FSC is the original circuit

with the functionality modified for a set of protected input cubes.
The RU stores the key, compares the circuit’s input with the key,

and outputs a restore vectorwhich is XOR’ed with the FSC output.

If the key is correct, the restore vector will fix the FSC’s output

and the circuit will have correct output. There are two variants

of SFLL: SFLL-HD and SFLL-flex. SFLL-HD has been successfully

attacked by a functional analysis based attack [15]. As the latter

remains secure, provides higher flexibility in selecting protected

cubes, and is more relevant to SAS, we focus on SFLL-flex in this

paper. An SFLL-flex configuration can be described using the

number of protected cubes, c , and the number of specified bits

of each cube, k , denoted as SFLL-flex
c×k

. The authors of [24]

derived the following characteristics of a circuit locked with

SFLL-flex
c×k

: (1) the fraction of input minterms whose output

will be corrupted by a wrong key (i.e. the “error rate” of a wrong
key) is c · 2

−k
; and (2) the probability that a SAT attack finds

the correct key within q iterations is q · 2
⌈loд2c ⌉−k

. We illustrate

this relationship in Fig. 4. As a higher SAT success probability



indicates weaker security, SFLL inherently suffers from a trade-

off between security and effectiveness.

Figure 2: SFLL’s error rate of wrong keys vs. the probabil-
ity of SAT finding the correct key in 100 iterations
The rest of the paper is organized as follows. We show that

SFLL’s trade-off makes it infeasible to secure real-world appli-

cations in Section 3. We then mathematically prove that the

trade-off applies to all logic locking schemes in Section 4. In

Section 5, SAS’s hardware structure is presented and its expo-

nential SAT attack complexity is proved in theory. Section 6

shows the experimental results which demonstrate that when

the same set of critical minterms are selected by SAS and SFLL,

SAS achieves higher security than SFLL while maintaining simi-

lar application-level effectiveness. Section 7 concludes the paper.

3 INSUFFICIENCY OF SFLL
In this section, we investigate the application-level effectiveness

of SFLL [24]. Specifically, we lock the multiplier within a 32-bit

80386 processor since it is the largest combinational component.

The application-level impact is evaluated using the PARSEC

Benchmark Suite [1]. In order to evaluate the application-level

impact of a logic locking scheme, we modify the GEM5 [2]

simulator so that error is injected into the locked processor

module according to the hardware error profile due to the wrong

key. In this way, the circuit-level error induced by an incorrect

(including approximate) key can be evaluated at the application

level. This framework is illustrated in Fig. 3 which is similar to

the strategy used in [6, 25].
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Figure 3: Our experimental framework
SFLL allows the designer to explore the trade-off between

effectiveness and security. We show that a “sweet spot” does not

exist. In our experiments, we lock the multiplier with various

SFLL configurations, each having a different level of security

against SAT attack, quantified by the average SAT iterations to

unlock (as the X axis in Fig. 4). The effectiveness of locking is

evaluated by running the PARSEC benchmarks on the locked

processors loaded with approximate keys. The percentage of

PARSEC benchmark runs with an incorrect outcome is the effec-

tiveness criterion of each locking configuration. The trade-off is

illustrated in Fig. 4 from which we observe that the wrong keys’

impact decreases with the increase in SAT complexity. In order

to have a visible accuracy drop for most benchmarks, the SFLL

locked processor cannot endure more than roughly 1000 SAT

iterations. Such a locking scheme is extremely vulnerable since

1000 SAT iterations can be fulfilled within minutes. Therefore, a

logic locking scheme that ensures high application-level impact

without sacrificing SAT complexity is needed.
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Figure 4: Security vs. effectiveness trade-off for SFLL-
locked processor running PARSEC benchmarks.
4 LOGIC LOCKING’S UNIVERSAL

TRADE-OFF
This section generalizes the trade-off of SFLL to all logic locking

schemes. We start with definitions of concepts and then prove

the relationship between security and effectiveness.

Definition 4.1. We say that a key ®K corrupts a primary input

minterm ®X if and only if the locked circuit produces a different

output to ®X from the original circuit’s output, i.e. FL( ®X , ®K) ,
F ( ®X ).

Definition 4.2. The error rate ϵ ®K of a key ®K is the portion of

primary input minterms corrupted by the key ®K .

Note that ϵ ®K = 0 for any correct key. Let X ®K be the set of

input minterms corrupted by ®K . Then, ϵ ®K =
|X ®K |

2
n , where n is

the number of bits in the primary input. We use ϵ to denote the

average error rate across all the keys. When the key is k bits

long,

ϵ =
1

2
k

∑
®K ∈{0,1}k

ϵ ®K

Definition 4.3. The corruptibility γ ®X of a primary input

minterm ®X is the portion ofwrong keys that corrupt thisminterm.

Let K ®X be the set of wrong keys that corrupts the primary

input minterm ®X and KW
be the set of wrong keys. Then, γ ®X =

|K ®X |

|KW |
. Let γ denote the average corruptibility over all input

minterms, i.e.
γ =

1

2
n

∑
®X ∈{0,1}n

γ ®X

Theorem 4.4. The average error rate of all wrong keys equals
the average corruptibility of all input minterms, i.e. ϵ = γ .
See proof in Appendix A. Let λ be the number of SAT itera-

tions that a SAT attacker needs to find the correct key.

Theorem 4.5. The expected number of SAT iterations E[λ] is
lower bounded by 1

γ .

Proof. In each SAT iteration, the average number of wrong

keys pruned by the DI ®X is upper bounded by γ |KW | (because

some of the wrong keys may have already pruned out by DIs of

previous iterations). Therefore,

E[λ] ≥
|KW |

γ |KW |
=

1

γ

Hence proved. □



Theorems 4.4 and 4.5 explicitly point out that there exists

an inverse relationship between ϵ and the lower bound of E[λ].
This quantifies the trade-off between them. This trade-off ap-

plies to any logic locking scheme. Note that different input

minterms may inject a different amount of error at the applica-

tion level. By assigning higher corruptibility to a few minterms

with high application-level impact, we can achieve high effec-

tiveness while maintaining high security by keeping γ low and

E[λ] high. This is the main intuition behind SAS.

5 SAS’S ARCHITECTURE AND PROPERTIES
In Sec. 3 and 4, we demonstrated that two competing objectives

exist for all logic locking schemes:

(1) Effectiveness: Any incorrect key should have a high appli-

cation-level error impact.

(2) Security: The complexity of determining the correct key

via SAT attacks should be very high.

In this section, we introduce Strong Anti-SAT (SAS) logic lock-
ing scheme which aims to achieve both objectives simultane-

ously. SAS guarantees an exponential expected SAT solving time

while having a large impact on the accuracy of real-world appli-

cations. In SAS, instead of uniformly distributing the error across

all possible inputs, we identify certain input patterns which po-

tentially have a higher impact on the overall application-level

error. We call these inputs critical minterms. SAS is config-

ured in such a way that any incorrect key corrupts any critical

minterm. For the other minterms, the corruptibility is low.

5.1 The SAS Block
Let M be the set of critical minterms andm = |M| be the num-

ber of critical minterms. For the ease of implementation, we

always choosem to be a power of 2. The basic locking infras-

tructure is the SAS block which is illustrated in Fig. 5. The key ®K

of an n-bit SAS block consists of two n-bit sub-keys, ®K1 and
®K2.

In order to describe the mechanism of the SAS locking scheme

clearly, we use a reverse order and start our illustration from

the output side.

Figure 5: The architecture of SAS configuration 1with the
details of the SAS Block
YSAS is the output of the SAS block. If YSAS = 1, a fault will

be injected into the original circuit. д is a function with an on-

set-size of 1, i.e. only one input minterm will have output 1 and

all others will have output 0. д̄ has the opposite functionality of

д. A function block ®X ′ = H ( ®X , ®K1) is inserted before д and д̄ and

it works as follows. If ®X is not a critical minterm, then ®X ′ = ®X .

In this case, only one combination of ®K1 will make д output 1,

therefore ®X has a low corruptibility. If ®X is a critical minterm,

then for a portion of ®K1,
®X is adjusted according to ®K1 to obtain

®X ′
such that д( ®X ′, ®K1) = 1 and hence the corruptibility is in-

creased. ®X ′ = H ( ®X , ®K1) further ensures that the wrong keys that

corrupts each critical minterm aremutually exclusive and evenly

partition the set of wrong keys. More specifically, as the parti-

tioning is based on the ®K1 part of the key, we have the following.

Table 1: Illustration of howm critical minterms partition
the set of wrong keys

®K1 of wrong keys
®k1 · · · ®k

2
n
m

®k
2
n
m +1

· · · ®k
2

2
n
m

· · · ®k
2
n

critical

minterms

®X1 • • •

®X2 • • •
· · · · · ·

®Xm • •

non-

critical

minterms

®Xm+1 •

®Xm+2 •

· · ·
. . .

®X
2
n •

Let K1

®X
= { ®K1 |∀ ®K2 such that ( ®K1, ®K2) ∈ KW , ( ®K1, ®K2) ∈ K ®X }.

Then we have

∀ ®X1, ®X2 ∈ M, |K1

®X1

| = |K1

®X2

|, K1

®X1

∧ K1

®X2

= ∅
⋃
®X ∈M

K1

®X
= Zn

2
(4)

where n is the number of bits in ®X , ®K1, and
®K2. This effect

is illustrated in Table 1. The 2 configurations of SAS will be

introduced in the rest of this section.

5.2 Configuration 1: SAS with One SAS Block
This configuration is illustrated in Fig. 5. In this configuration,

there is one SAS block. As the critical minterms evenly partition

the set of wrong keys, the corruptibility of each critical minterm

is γc =
1

m . Below we derive the security (SAT attack complexity)

of this configuration assuming that the SAT solver chooses a

DI uniformly at random in each iteration. This is a common

assumption [12, 22, 24]. The security is quantified using the

expected number of SAT iterations E[λ]. To start with, we give

2 useful lemmas. The proofs are given in Appendices B and C.

Lemma 5.1. Let Di be the set of DIs that have been chosen
in the first i iterations and ®X be a primary input minterm. If
K ®X ⊂

⋃
®X ′∈Di K ®X ′ , then ®X cannot be the DI of any SAT iteration

beyond i .
Lemma 5.2. For SAS Configuration 1, any critical mintermmust

exist in the set of DIs when SAT finishes: ®X ∈ Dλ ∀ ®X ∈ M, where
λ is the total number of SAT iterations and Dλ is the set of all DIs.

Theorem 5.3. The expected number of SAT iterations of SAS
Configuration 1 is

E[λ] =
2
n +m

2

(5)

Proof. The total number of SAT iterations equals the total

number of DIs. DIs consist of critical minterms and non-critical

minterms. By Lemma 5.2, all the critical minterms must be in

the set of DIs for SAT to terminate. Therefore, we only need

to find the expected number of non-critical minterms that are
chosen as DIs. As illustrated in Table 1, ∀ ®X ′ < M, ∃ exactly

one ®X ∈ M such that K ®X ′ ⊂ K ®X . By Lemma 5.1, if this ®X is

chosen as DI before ®X ′
, then ®X ′

cannot be chosen in further

iterations any more. In other words, ®X ′
will count towards the

total number of iterations only when it is chosen before the

critical minterm ®X . By our assumption that the DI is chosen

uniformly at random in each iteration, ®X ′
has a probability of

1

2
to be chosen as DI before ®X is chosen. As this is true for any

non-critical minterm, the expected number of SAT iterations is

E[λ] = 1

2
(2n −m) +m = 2

n+m
2

. □

5.3 Configuration 2: Multiple SAS Blocks
In this configuration, we have l SAS blocks as illustrated in

Fig. 6. Each SAS block takes an n-bit primary input ®X , which



is shared among all the SAS blocks, and a 2n-bit key input.

The output of each SAS block is XOR’ed with a wire in the

original circuit. Therefore, a fault is injected into the original

circuit if at least 1 SAS block has output 1. Let M j
be the set

of critical minterms for the jth SAS block , j = 1, 2, . . . , l . For
ease of implementation, we choose l also to be a power of 2 and
l ≤ m. The relationship betweenM j

and the total set of critical

mintermsM is thatM1,M2, . . . ,Ml have the same cardinality,
are mutually exclusive, and evenly partition M, i.e.

|M1 | = |M2 | = · · · = |Ml |, Mi ∩ M j = ∅ ∀i , j ,
l⋃

k=1

Mk = M (6)

In this way, each SAS block has
m
l critical minterms. As each

critical minterm receives high corruptibility from only one SAS

block, the corruptibility of any critical minterm is γc =
l
m .

Figure 6: Configuration 2 with l SAS blocks

Lemma 5.4. For SAS Configuration 2, any critical mintermmust
exist in the set of DIs when SAT finishes: ®X ∈ Dλ ∀ ®X ∈ M, where
λ is the total number of SAT iterations and Dλ is the set of all DIs.

The proof is given in Appendix D. Below, we will analyze the

security of this configuration by deriving the expected number

of SAT iterations.

Theorem 5.5. The expected number of SAT iterations of SAS
Configuration 2 with l SAS blocks andm critical minterms is

E[λ] =
l · 2

n +m

l + 1

(7)

Proof. By Lemma 5.4, every critical minterm must count

toward the total number of SAT iterations. Therefore, we only

need to derive the expected number of non-critical minterms

that are chosen as DIs.

For any non-critical minterm ®X ′ <M, in the ith SAS block,

there exists exactly one critical minterm ®Xi such that the set of

wrong keys that corrupt ®X ′
in this SAS block,Ki , ®X ′ , is a subset of

the set of wrong keys that corrupt ®Xi , Ki , ®Xi
. i.e. Ki , ®X ′ ⊂ Ki , ®Xi

.

As the construction of the SAS block makes this true for any

individual SAS block and the critical minterms for each SAS

block are mutually exclusive, there are a total of l such critical

minterms. When all of these l critical minterms are chosen as

DI, they will cover the entire set of wrong keys that corrupt ®X ′
.

Therefore, by Lemma 5.1, in order to include ®X ′
in the set of DIs,

it must be selected before all l critical minterms are selected.

This holds for any non-critical minterm.

By our assumption that the DIs are chosen uniformly at ran-

dom in each SAT iteration, the probability that each non-critical

minterm will be chosen as DI is
l

l+1
. Therefore, the expected

number of SAT iterations is E[λ] = l
l+1

(2n−m)+m = l ·2n+m
l+1

. □

The properties of both SAS configurations are summarized

in Table 2.

Table 2: Properties of the 2 SAS configurations

Configuration l γc E[λ]

1 1
1

m
2
n+m

2

2 1 ≤ l ≤ m l
m

l2n+m
l+1

6 EXPERIMENTS
This section shows the experimental results of SAS as well as the

comparison between SAS and SFLL. Recall that, as illustrated in

Fig. 3, we obtain the gate-level netlists of a 32-bit 80386 proces-

sor by synthesizing the high-level description using Cadence

RTL Compiler. Then we lock the netlist using various SAS con-

figurations and SFLL-flex with the same set of critical minterms.

Note that the critical minterms are selected from those that are
present in each benchmark. The architecture-level simulation

is conducted by a modified GEM5 [2] simulator where error

is injected into the locked processor module according to the

hardware error profile due to the wrong key. We conduct the

following experiment to verify the security and effectiveness of

SAS. We also compare SAS with SFLL.

6.1 Security and Effectiveness
We first verify whether the security of SAS against SAT attack

(i.e. the actual number of SAT iterations) matches what we have

derived in the last section. The security of SAS and SFLL is also

compared. We lock the multiplier in the 32-bit 80386 processor

with SAS configurations 1 (l = 1) and 2 (l = 2 and l = 4) as well

as SFLL. We choosem = 4 for each evaluated locking scheme.

The expected and actual numbers of SAT iterations to break

various SAS configurations are given in Fig. 7. The theoretical

and experimental results are consistent with each other and

grow exponentially in the key length n. Fig. 8 compares the

actual SAT iterations of SAS and SFLL. In Fig. 8a, it can be

observed that SAS’s SAT complexity is higher than that of SFLL

by a roughly constant factor whenm is fixed. Note that the same

set of four critical minterms (m = 4) are used for each locking

scheme. In Fig. 8b, we vary the critical minterm count (m) from

4 to 32 and demonstrate its impact on the security of SAS and

SFLL. While SAS configurations become stronger with more

critical minterms, SFLL becomes weaker. Therefore, SAS is more

secure against SAT attack and gives designers more flexibility

when more critical minterms are needed.

We evaluate the effectiveness of SAS and SFLL at the applica-

tion level using PARSEC [1] benchmarks. In our experiments,

various numbers of critical minterms are locked. The same set of

critical minterms are used for SAS and SFLL in each experiment.

For SAS, we choose l = 1 whenm = 1 and l = 2 whenm ≥ 2.

Fig. 9 shows that both SAS and SFLL are effective at the applica-

tion level. Considering that SAS’s security is not compromised

with the increase inm as opposed to SFLL (as shown in Fig. 8b),

SAS is a significant improvement over SFLL.

6.2 Hardware Overhead and Summary
Now that we have demonstrated the security of SAS against

SAT attack and its application-level effectiveness, we evaluate

its hardware overhead and compare with existing logic locking

methods. The hardware (i.e. chip area) overhead is estimated

using the number of gates. The baseline case is a 32-bit multi-

plier without any logic locking. The details of each compared

approach are as follows.
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Figure 7: The theoretical vs. actual SAT iterations for the 3 experimented SAS configurations
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Figure 9: The fraction of PARSEC benchmark runs with
incorrect outcome on SAS and SFLL Locked processors
• SAS: The multiplier is locked using a 32-bit SAS block with

m = 4 and l = 2. This configuration has been shown both

secure and effective.

• Conventional locking scheme: the processor’s multiplier is

locked using 32-bit Anti-SAT block + 5% fault-impact-based

key-gates [10].

• SFLL-flex: the processor’s multiplier is locked with SFLL-flex

using the same set of 4 critical minterms as SAS.

Table 3: Comparison among logic locking techniques
Locking

Scheme

Application-Level

Impact

SAT Attack

Complexity
HW Overhead

Conventional

logic locking

very low after

AppSAT

exponential in n
(m not applicable)

7.93%

SFLL-flex high
exponential in n,
decreasing inm 7.87%

SAS high
exponential in n,
increasing inm 4.35%

The comparison between SAS and existing logic locking

schemes are shown in Table 3. As seen, both SFLL and SAS have

higher application-level impact than conventional logic lock-

ing. However, SAS has lower hardware overhead and stronger

security than SFLL.

7 CONCLUSION
In this work, we investigate logic locking methodologies for se-

curing real-world workloads. We motivate our work by demon-

strating the insufficiency of the state-of-the-art logic locking

scheme in securing such applications. We point out that this is

due to the fundamental trade-off between security (SAT attack

complexity) and effectiveness (error rate of wrong keys) of logic

locking. We formally prove this trade-off. In order to address

this dilemma, we propose Strong Anti-SAT (SAS) where a set of

critical minterms are assigned higher corruptibility in order to

ensure high application-level impact. Experimental results show

that SAS secures processors against SAT attack by ensuring

exponential SAT attack complexity and high application-level

impact simultaneously given any wrong key. We also evaluate

the hardware overhead of SAS and compare it with existing

locking schemes where it is shown that SAS has lower hardware

overhead.
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A PROOF OF THEOREM 4.4
Recall that

ϵ =
1

|KW |

∑
®K ∈KW

ϵ ®K =
1

|KW |

∑
®K ∈KW

|X ®K |

2
n =

1

2
n |KW |

∑
®K ∈KW

|X ®K |

and

γ =
1

2
n

∑
®X ∈{0,1}n

γ ®X =
1

2
n

∑
®X ∈{0,1}n

|K ®X |

|KW |
=

1

2
n |KW |

∑
®X ∈{0,1}n

|K ®X |

Therefore, in order to prove ϵ = γ , we only need to prove∑
®K ∈KW

|X ®K | =
∑

®X ∈{0,1}n

|K ®X | (8)

Let us consider the following bipartite graph G = (X,KW , E)
whereX is {0, 1}n which is the set of all possible input minterms,

KW
is the set of wrong keys, and E = {( ®X , ®K)| ®X ∈ X and ®K ∈

KW
, ®K corrupts ®X }. Both sides of Eq. 8 denote the total number

of elements in E and hence must be equal.

B PROOF OF LEMMA 5.1
Proof. Recall that Equation (2) gives the SAT formula for

each SAT iteration:

C( ®Xi , ®Kα , ®Yα ) ∧C( ®X1, ®Kβ , ®Yβ ) ∧ (®Yα , ®Yβ )

i−1∧
j=1

(C( ®X j , ®Kα , ®Yj ) ∧C( ®X j , ®Kβ , ®Yj ))

To satisfy the first line, at least one of ®Kα and ®Kβ must be a

wrong key that corrupts ®X . However, since any wrong key that

corrupts ®X also corrupts at least 1 previously found DI, this

wrong key cannot satisfy the second line. Hence such ®X cannot

be the DI in future iterations. □

C PROOF OF LEMMA 5.2
Proof. Recall that д has on-set size 1. Let ®P be the input that

makes д( ®P) = 1. ∀ ®X ∈ M, let ®K1 = ®X ⊕ ®P . Then, any ®K =

( ®K1, ®K2) ∈ KW
is a wrong key that only corrupts ®X . Therefore,

®X has to be chosen as a DI to prune out this wrong key. □

D PROOF OF LEMMA 5.4
Proof. This is a natural extension of Lemma 5.2. Let ®X be

a critical minterm and ®X ∈ M j
. Recall that д has on-set size

1. Let ®P be the input that makes д( ®P) = 1. ∀ ®X ∈ M j
, let

®k =
®X ⊕ ®P . Then, let us consider the following wrong key ®K =

( ®K1, ®K2, . . . , ®K l ) ∈ KW
which is composed as follows: ®K j =

(®k, ®K j
2
) ∈ KW

j where KW
j is the set of wrong keys for the jth

SAS block. For any i = 1, 2, . . . , l that i , j , ®K i ∈ KC
i where KC

i
is the set of correct keys for the ith SAS block. Such a key ®K is a

wrong key that only corrupts ®X . Therefore, ®X has to be chosen

as a DI to prune out this wrong key. □
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