
Robust and Attack Resilient Logic Locking with a High
Application-Level Impact

YUNTAO LIU, MICHAEL ZUZAK, YANG XIE, ABHISHEK CHAKRABORTY, ANKUR
SRIVASTAVA,
University of Maryland, College Park

Logic locking is a hardware security technique aimed at protecting intellectual property (IP) against security

threats in the IC supply chain, especially those posed by untrusted fabrication facilities. Such techniques

incorporate additional locking circuitry within an IC that induces incorrect digital functionality when an

incorrect verification key is provided by a user. The amount of error induced by an incorrect key is known

as the effectiveness of the locking technique. A family of attacks known as "SAT attacks" provide a strong

mathematical formulation to find the correct key of locked circuits. In order to achieve high SAT resilience
(i.e. complexity of SAT attacks), many conventional logic locking schemes fail to inject sufficient error into

the circuit when the key is incorrect. For example, in the case of [27–29, 34] there are usually very few (or

only one) input minterms that cause any error at the circuit output. The state-of-the-art stripped functionality

logic locking (SFLL) [33] technique provides a wide spectrum of configurations which introduced a trade-off

between SAT resilience and effectiveness. In this work, we prove that such a trade-off is universal among

all logic locking techniques. In order to attain high effectiveness of locking without compromising SAT

resilience, we propose a novel logic locking scheme, called Strong Anti-SAT (SAS). In addition to SAT attacks,

removal-based attacks are another popular kind of attack formulation against logic locking where the attacker

tries to identify and remove the locking structure and remove them. Based on SAS, we also propose Robust

SAS (RSAS) which is resilient to removal attacks and maintains the same SAT resilience and effectiveness as
SAS. SAS and RSAS have the following significant improvements over existing techniques. (1) We prove that

the SAT resilience of SAS and RSAS against SAT attack is not compromised by increases in effectiveness. (2)
In contrast to prior work which focused solely on the circuit-level locking impact, we integrate SAS-locked

modules into an 80386 processor and show that SAS has a high application-level impact. (3) Our experiments

show that SAS and RSAS exhibit better SAT resilience than SFLL and their effectiveness is similar to SFLL.

CCS Concepts: • Security and privacy→ Security in hardware.

Additional Key Words and Phrases: logic locking, SAT attack, machine learning

ACM Reference Format:
Yuntao Liu, Michael Zuzak, Yang Xie, Abhishek Chakraborty, Ankur Srivastava. 2019. Robust and Attack

Resilient Logic Locking with a High Application-Level Impact. 1, 1 (May 2019), 20 pages. https://doi.org/10.

1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Due to the increasing cost of maintaining IC foundries with advanced technology nodes, many chip

designers have become fabless and outsource their fabrication to off-shore foundries. However,

such foundries are not under the designer’s control which puts the security of the IC supply chain

Author’s address: Yuntao Liu, Michael Zuzak, Yang Xie, Abhishek Chakraborty, Ankur Srivastava,

University of Maryland, College Park.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

XXXX-XXXX/2019/5-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: May 2019.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Yuntao Liu et. al.

at risk. Untrusted foundries are capable of malicious activities including hardware Trojan insertion,

piracy and counterfeiting, overbuilding, etc. Many design-for-trust techniques have been studied as

countermeasures among which logic locking has been the most widely studied [3]. A logic locked

circuit requires a secret key input and the correct key is kept by the designer and not known to

the foundry. The functionality of the circuit is correct only if the key is correct. After the foundry

manufactures the locked circuit and returns it to the designer, the correct key is applied to the

circuit by connecting a tamper-proof memory containing the key to the key inputs. This process is

called activation. Over the years, different types of logic locking mechanisms have been suggested.

Initially, locking involved inserting XOR/XNOR gates in a synthesized design netlist [17]. Later,

techniques based on VLSI testing principles have been outlined to improve logic locking schemes

by manifesting high corruption at the output bits when an incorrect key is applied [15, 16].

The Boolean satisfiability-based attack, a.k.a. SAT attack [23] was a game changer and became

the basis of many variants [4, 19, 20]. SAT provides a strong mathematical formulation to find the

correct locking key of a logic locked IC which prunes out wrong keys in an iterative manner. In

each iteration, an input (called the Distinguishing Input, or DI) is chosen by the SAT solver and all

the wrong keys that corrupt the output of this DI are pruned out. All wrong keys are pruned out

when no more DI can be found. Point function (PF)-based logic locking, including SARLock [34]

and Anti-SAT [27, 28], force the number of SAT iterations to be exponential in the key size by

pruning out only a very small number of wrong keys in each iteration. However, PF-based locking

schemes have a drawback that there are very few (or only one) input minterms whose output is

incorrect for each wrong key. Hence the overall error rate of the locked circuit with a wrong key is

very small. This disadvantage is captured by approximate SAT attacks such as AppSAT [19] and

Double-DIP [20]. These attack schemes are able to find an approximate key (approx-key) which
makes the locked circuit behave correctly for most (but not all) of the input values. Another kind

of popular attack against logic locking schemes is removal attacks [30, 31]. In a removal attack, the

attacker tries to find the logic locking module, remove it, and replace its output with a constant 0

or 1. The key step in this attack is to identify the output wire of the locking module. This can be

achieved by structural analysis assisted by calculating the signal probability skew (SPS) of each

wire [31]. Locking techniques such as Anti-SAT [28] is most vulnerable to this type of attack since

the correct functionality of the original circuit can be obtained by removing the Anti-SAT module

and replacing its output with 0.

More recently, Yasin et al. proposed stripped functionality logic locking (SFLL) which allows the

designer to select a set of protected input patterns that are affected by almost all the wrong keys

while other input patterns are affected by very few wrong keys [33]. SFLL is not vulnerable to

removal attack since the functionality of the original circuit for the protected input patterns has

been modified in SFLL. However, when the number of protected patterns increases, SAT attacks

need significantly fewer iterations to find the correct key. Essentially, SFLL creates a fundamental

trade-off between SAT resilience (i.e. SAT attack complexity) and effectiveness (i.e. the amount

of error injected by a wrong key). This trade-off is problematic. On the one hand, if only very

few input patterns are protected, a wrong key may not inject enough error into the circuit and

useful work may still be done using the chip, rendering locking ineffective. On the other hand,

having more protected input patterns will compromise the circuit’s SAT resilience. Moreover. as

we move into the machine learning (ML) era, error-resilient applications are becoming increasingly

relevant since most ML-based applications usually embody substantial amount of error resilience.

Hence small amount of error in the hardware (introduced by incorrect keys and/or hardware

simplification) may not necessarily impact the overall application accuracy. With SFLL, if we want

to ensure a very high corruption at the hardware level (for wrong keys), the resiliency to SAT

would inevitably reduce. Addressing this dilemma is the main theme of our paper.

, Vol. 1, No. 1, Article . Publication date: May 2019.

Robust and Attack Resilient Logic Locking with a High Application-Level Impact 3

We propose Strong Anti-SAT (SAS) to address the challenges in achieving high effectiveness

without sacrificing SAT resilience. On one hand, SAS ensures that, given any wrong (including

approximate) key, the error injected by locking circuitry will have significant application-level

impact. On the other hand, SAS is provably resilient to SAT attacks (i.e. requiring exponential

time). Based on SAS, we also propose Robust SAS (RSAS), a variant of SAS that is not vulnerable

to removal attacks and has the same SAT resilience and effectiveness as SAS. This makes RSAS a

substantial improvement over the limitations posed by SAS. The contribution of this work is as

follows.

(1) We prove the fundamental trade-off between SAT resilience and effectiveness which is applica-

ble to any logic locking scheme.

(2) We demonstrate the inability of existing locking techniques to secure hardware running

real-world workloads due to such a trade-off. We show that, when the longest combinational

path (i.e. the multiplier) in a 32-bit 80386 processor is locked using SFLL, the processor fails to

simultaneously have high SAT complexity and high application-level impact on both PARSEC

[1] and ML-based application benchmarks.

(3) We propose Strong Anti-SAT (SAS) to address this challenge. In SAS, a set of input minterms

that have higher impact on the applications are identified as critical minterms. We design

the locking infrastructure of SAS such that given a wrong key, the critical minterms are

more likely to introduce error in the circuit and hence result in an application-level error. We

also prove that the SAT complexity is exponential in the number of key bits and does not

deteriorate when the number of critical minterms increases. This is a substantial improvement

over SFLL.

(4) We also propose a removal attack resistant variant of SAS, called Robust SAS (RSAS). RSAS is

designed such that it achieves the same SAT resilience and effectiveness levels as SAS and if the
locking module of RSAS is removed, the remaining circuit will exhibit incorrect functionality

for critical minterms.

(5) Experiment results show that, when locked using the same number of critical minterms,

SAS and RSAS have higher SAT resilience than SFLL and they have about the same level

of effectiveness. In terms of area, power, and delay overhead, RSAS and SFLL have similar

overheads in general and are a little better than SAS.

The rest of the paper is organized as follows. Sec. 2 introduces the background on SAT attack

and existing logic locking schemes. We show that SFLL’s trade-off makes it incapable to secure

real-world applications in Section 3. We then mathematically prove that the trade-off applies to

all logic locking schemes in Section 4. In Section 5, SAS’s hardware structure is presented and its

exponential SAT attack complexity is proved in theory. The removal attack resistant variant of

SAS, i.e. RSAS, is introduced in Section 6. Section 7 describes the methodology to choose critical

minterms. Section 8 shows the experimental results which demonstrate that when the same set of

critical minterms are selected by SAS, RSAS, and SFLL, SAS and RSAS achieve higher security than

SFLL while maintaining similar application-level effectiveness. Section 9 concludes the paper.

2 BACKGROUND
2.1 Attack Model
Fig. 1 illustrates the threat model we consider which is consistent with the latest papers in the logic

locking field [5, 11, 19, 24–26, 28, 33–35]. The attacker can be either an untrusted foundry or an

untrusted user who has the ability to reverse engineer the fabricated chip, obtaining the locked

gate-level netlist. The attacker is considered to have the following resources:

, Vol. 1, No. 1, Article . Publication date: May 2019.

4 Yuntao Liu et. al.

Packaging

Activation
$

AttackRE: Reverse Engineering

Untrusted Foundry or Other Stages
Designer

Designer or

Trusted Third

Party

Obfuscated

netlist
Original

netlist

RTL

netlist

Non-

functional IC

Obfuscated

netlist

GDS II Masks

Layout

generation Fabrication
IC

design

Functional

IC

Open Market

Deciphered

netlist

RE RE RE RE
Black-Box

Oracle

Fig. 1. The targeted attack model of logic locking

(1) The locked gate-level netlist of the circuit under attack. This can be obtained by reverse

engineering the GDS-II file (which the foundry has) or a fabricated chip (which can be done

by a capable end user).

(2) An activated chip. The attacker is considered to own an activated chip (i.e. the one loaded
with the correct key) since such a chip can be purchased from the open market.

In general, logic locking research does not assume that the attacker is able to insert probes into

the activated circuit, i.e. to observe the intermediate values. This is because protection schemes

(e.g. analog shield [13]) can counter probing attacks.

2.2 SAT Attack
For any combinational digital circuit, the functionality can be expressed using a Boolean function

𝐹 : ®𝑋 → ®𝑌 where ®𝑋 and ®𝑌 are the primary input and output, respectively. The logic locked circuit

𝐹𝐿 takes one more input, the key input ®𝐾 , in addition to the primary input. If ®𝐾 is correct, then

∀ ®𝑋, 𝐹 (®𝑋) = 𝐹𝐿 (®𝑋, ®𝐾). 𝐹 (®𝑋) may not be equal to 𝐹𝐿 (®𝑋, ®𝐾) if ®𝐾 is incorrect. As stated earlier, the key

is stored tamper-proof memory and is not accessible to the attacker.

The Boolean satisfiability-based attack, a.k.a. SAT attack is a strong theoretical formulation to

find the correct key of a locked circuit. In the context of the SAT attack, we use the Conjunctive
Normal Form (CNF): 𝐶 (®𝑋, ®𝐾, ®𝑌) to characterize Boolean satisfiability: 𝐶 (®𝑋, ®𝐾, ®𝑌) = TRUE if ®𝑋 , ®𝐾 ,
and ®𝑌 satisfy ®𝑌 = 𝐹𝐿 (®𝑋, ®𝐾), where 𝐹𝐿 stands for the Boolean functionality of the locked circuit.

𝐶 (®𝑋, ®𝐾, ®𝑌) = FALSE otherwise. SAT attacks run iteratively and prune out incorrect keys in every

iteration. The attack consists of the following steps:

(1) In the initial iteration, the attacker looks for a primary input, ®𝑋1, and two keys, ®𝐾𝛼 and ®𝐾𝛽 ,
such that the locked circuit produces two different outputs ®𝑌𝛼 and ®𝑌𝛽 :

𝐶 (®𝑋1, ®𝐾𝛼 , ®𝑌𝛼) ∧𝐶 (®𝑋1, ®𝐾𝛽 , ®𝑌𝛽) ∧ (®𝑌𝛼 ≠ ®𝑌𝛽) (1)

®𝑋1 is called the Distinguishing Input (DI).
(2) The DI, ®𝑋1, is applied to the activated circuit (the oracle) and the output ®𝑌1 is recorded. Note

that ®𝐾𝛼 , ®𝑌𝛼 , and ®𝐾𝛽 , ®𝑌𝛽 are not recorded. Only the DI and its correct output are carried over

to the following iterations.

(3) In the 𝑖th iteration, a new DI and a pair of keys, ®𝐾𝛼 and ®𝐾𝛽 , are found. The newly found ®𝐾𝛼
and ®𝐾𝛽 should produce correct outputs for all the DIs found in previous iterations. To this

end, we append a clause to Eq. (1):

𝐶 (®𝑋𝑖 , ®𝐾𝛼 , ®𝑌𝛼) ∧𝐶 (®𝑋𝑖 , ®𝐾𝛽 , ®𝑌𝛽) ∧ (®𝑌𝛼 ≠ ®𝑌𝛽)
𝑖−1∧
𝑗=1

(𝐶 (®𝑋 𝑗 , ®𝐾𝛼 , ®𝑌𝑗) ∧𝐶 (®𝑋 𝑗 , ®𝐾𝛽 , ®𝑌𝑗))
(2)

In this way, all the wrong keys that corrupt the output of previously found DIs (i.e. the output
is different from that of the activated chip) are pruned out from the search space.

, Vol. 1, No. 1, Article . Publication date: May 2019.

Robust and Attack Resilient Logic Locking with a High Application-Level Impact 5

(4) SAT solves Eq. (2) repeatedly until no more DI can be found, i.e. Eq. (2) is not satisfiable any
more.

(5) In this case, there is no more DI. The output of the SAT attack is a key ®𝐾 that produces the

same output as the activated circuit to all the DIs, which can be expressed using the following

CNF:

𝜆∧
𝑖=1

𝐶 (®𝑋𝑖 , ®𝐾, ®𝑌𝑖) (3)

where 𝜆 is the total number of SAT iterations.

Theorem 2.1. SAT is guaranteed to find a correct key ®𝐾𝑐 to the locked circuit.

The proof is given in Appendix A. Note that there can be multiple correct keys: some keys can

be different from but functionally equivalent to the actual key in the activated chip.

2.3 Existing Logic Locking Schemes
Multiple logic locking schemes have been proposed to thwart the SAT attack [27, 28, 32–34]. There

are two ways to mitigate the SAT attack: one is to increase the time for each SAT iteration and the

other is to increase the number of SAT iterations. The former requires either AES blocks [32] or re-

configurable logic [8], which is impractical for most circuits. The other approach is to exponentially

increase the number of SAT iterations. This approach is also not perfect because a locking scheme

must be rather ineffective to improve security. This is the case for Anti-SAT [27, 28], SARLock [34],

and and TTL [29]. All these techniques are vulnerable to the approximate SAT attacks (such as

AppSAT [19] and Double-DIP [20]).

The state-of-the-art, stripped functionality logic locking (SFLL) [33], explores the trade-off between

security and effectiveness. SFLL comprises of two parts: a functionality stripped circuit (FSC) and a

restore unit (RU). The FSC is the original circuit with the functionality modified for a set of protected
input cubes. This modification makes SFLL resistant to removal attack. If the RU is removed, the

FSC’s functionality of protected input cubes is different from the original circuit, thus making

the attack unsuccessful. The RU stores the key, compares the circuit’s input with the key, and

outputs a restore vectorwhich is XOR’ed with the FSC output. If the key is correct, the restore vector

will fix the FSC’s output and the circuit will have correct output. There are two variants of SFLL:

SFLL-HD and SFLL-flex. SFLL-HD has been successfully attacked by a functional analysis based

attack [21, 22]. As the latter remains secure, provides higher flexibility in selecting protected cubes,

and is more relevant to SAS, we focus on SFLL-flex in this paper. An SFLL-flex configuration can be

described using the number of protected cubes, 𝑐 , and the number of specified bits of each cube,

𝑘 , denoted as SFLL-flex
𝑐×𝑘

. The authors of [33] derived the following characteristics of a circuit

locked with SFLL-flex
𝑐×𝑘

: (1) the fraction of input minterms whose output will be corrupted by a

wrong key (i.e. the “error rate” of a wrong key) is 𝑐 · 2
−𝑘
; and (2) the probability that a SAT attack

finds the correct key within 𝑞 iterations is 𝑞 · 2
⌈𝑙𝑜𝑔2𝑐 ⌉−𝑘

. We illustrate this relationship in Fig. 4. As a

higher SAT success probability indicates weaker security, SFLL inherently suffers from a trade-off

between security and effectiveness.

3 INSUFFICIENCY OF SFLL FOR REAL-WORLD APPLICATIONS
In this section, we investigate the application-level effectiveness of SFLL [33]. Specifically, we lock

the multiplier within a 32-bit 80386 processor since it is the largest combinational component. The

application-level effects are evaluated using both generic and machine learning (ML) benchmarks.

We emphasize ML-based applications because they are inherently error-resilient and hence are more
difficult to protect using logic locking. Details of the benchmarks are listed in Table 1.

, Vol. 1, No. 1, Article . Publication date: May 2019.

6 Yuntao Liu et. al.

Fig. 2. The positive correlation between the error rate of wrong keys and the probability that SAT finds the
correct key in certain iterations

Table 1. Application benchmark details

Benchmark Type Quantity Content
Generic Applications 9 The PARSEC Benchmark Suite [1]

Machine Learning 5 MNIST [10], SVHN [12], CIFAR10 [9], ILSVRC-2012 [7], Oxford102 [14]

In order to evaluate the application-level impact of a logic locking scheme, we modify the

GEM5 [2] simulator so that error is injected into the locked processor module according to the

hardware error profile due to the wrong key. In this way, the circuit-level error induced by an

incorrect (including approximate) key can be evaluated at the application level. This framework is

illustrated in Fig. 3 which is similar to the strategy used in [6, 35].

High-Level
Description

of a
Processor

Gate-Level
Netlist of a
Processor Locked Netlist of a

Processor

Architecture-
Level

Simulation
Tool

Synthesis Logic
Locking

AppSAT
Attack

Approx-Key

Error
Profile

Fig. 3. Our Experimental Framework

SFLL allows the designer to explore the trade-off between effectiveness and SAT resilience. We

show that a “sweet spot” does not exist. In our experiments, we lock the multiplier with various

SFLL configurations, each having a different level of SAT resilience, quantified by the average SAT

iterations to unlock (as the X axis in Fig. 4). The effectiveness of each locking scheme is evaluated

by running the PARSEC and ML benchmarks on the locked processors loaded with approximate

keys. The percentage of PARSEC benchmark runs with incorrect outcome and the accuracy loss of

ML models are used as the criteria to evaluate the effectiveness of each locking configuration. The

trade-off is illustrated in Fig. 4.

From Fig. 4, we observe that the wrong keys’ impact decreases with the increase in SAT resiliency.

In order to have a visible accuracy drop for the most error-resilient benchmarks, the SFLL locked

processor cannot endure more than roughly 1000 SAT iterations. Such a locking scheme is extremely

vulnerable since 1000 SAT iterations can be fulfilled within minutes. Therefore, a logic locking

scheme that ensures high application-level impact without sacrificing SAT resiliency is needed.

4 FUNDAMENTAL TRADE-OFF FOR ALL LOGIC LOCKING SCHEMES
This section generalizes the trade-off of SFLL to all logic locking schemes. We start with definitions

of concepts and then prove the relationship between SAT resilience and effectiveness.

, Vol. 1, No. 1, Article . Publication date: May 2019.

Robust and Attack Resilient Logic Locking with a High Application-Level Impact 7

101 103 105 107 109

Average SAT Attack Iterations to Unlock

0

25

50

75

100

%
 B

en
ch

m
ar

k
Ru

ns
wi

th
 In

co
rre

ct
 O

ut
co

m
e

blackscholes
bodytrack
dedup

ferret
fluidanimate
freqmine

streamcluster
swaptions
x264

blackscholes
bodytrack
dedup

ferret
fluidanimate
freqmine

streamcluster
swaptions
x264

blackscholes
bodytrack
dedup

ferret
fluidanimate
freqmine

streamcluster
swaptions
x264

blackscholes
bodytrack
dedup

ferret
fluidanimate
freqmine

streamcluster
swaptions
x264

blackscholes
bodytrack
dedup

ferret
fluidanimate
freqmine

streamcluster
swaptions
x264

blackscholes
bodytrack
dedup

ferret
fluidanimate
freqmine

streamcluster
swaptions
x264

blackscholes
bodytrack
dedup

ferret
fluidanimate
freqmine

streamcluster
swaptions
x264

blackscholes
bodytrack
dedup

ferret
fluidanimate
freqmine

streamcluster
swaptions
x264

blackscholes
bodytrack
dedup

ferret
fluidanimate
freqmine

streamcluster
swaptions
x264

102 103 104 105 106 107 108

Average SAT Attack Iterations to Unlock

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Ac
cu

ra
cy

 L
os

s Cifar 10
ISLVRC 2012
MNIST
Oxford 102
SVHN

Fig. 4. SAT resiliency vs. locking effectiveness trade-off. Left: PARSEC benchmarks. Right: ML benchmarks.

Definition 4.1. We say that a key ®𝐾 corrupts a primary input minterm ®𝑋 if and only if the locked

circuit produces a different output to ®𝑋 from the original circuit’s output, i.e. 𝐹𝐿 (®𝑋, ®𝐾) ≠ 𝐹 (®𝑋).

Definition 4.2. The error rate 𝜖 ®𝐾 of a key ®𝐾 is the portion of primary input minterms corrupted

by the key ®𝐾 .

Let X®𝐾 be the set of input minterms corrupted by ®𝐾 . Then,

𝜖 ®𝐾 =
|X®𝐾 |
2
𝑛

where 𝑛 is the number of bits in the primary input. We use 𝜖 to denote the average error rate across

all the keys.

𝜖 =
1

|K𝑊 |
∑

®𝐾 ∈K𝑊
𝜖 ®𝐾

Definition 4.3. The corruptibility 𝛾 ®𝑋 of a primary input minterm ®𝑋 is the portion of wrong

keys that corrupt this minterm.

Let K ®𝑋 be the set of wrong keys that corrupts the primary input minterm ®𝑋 and K𝑊
be the set

of wrong keys. Then,

𝛾 ®𝑋 =
|K ®𝑋 |
|K𝑊 |

Let 𝛾 denotes the average corruptibility over all the input minterms, i.e.

𝛾 =
1

2
𝑛

∑
®𝑋 ∈{0,1}𝑛

𝛾 ®𝑋

Let us illustrate the above concepts with the following example. We consider a circuit with two

primary input bits (𝑥0, 𝑥1) and locked with a two-bit key (𝑘0, 𝑘1), as shown in Fig. 5. Table 2 is the

truth table for each possible primary input and key input combinations. If a key corrupts a primary

input, the corresponding cell is marked with (✗).
In Table 2, we also calculate the error rate of each key, the corruptibility of each input minterm,

and their averages. We can also observe that both the average error rate and average corruptibility

equal
2

3
. It turns out that this equality is universal in logic locking:

Theorem 4.4. The average error rate of all wrong keys equals the average corruptibility of all input
minterms, i. e. 𝜖 = 𝛾 .

, Vol. 1, No. 1, Article . Publication date: May 2019.

8 Yuntao Liu et. al.

x0

x0

x1

x1
y y

k0

k1

Original Circuit Locked Circuit

Fig. 5. An example of logic locking, with the original circuit on the left and the locked circuit on the right.

Table 2. Truth table of the locked circuit in Fig. 5

®𝐾 = (0, 0) ®𝐾 = (0, 1) ®𝐾 = (1, 1) ®𝐾 = (1, 0) Correct 𝑦 𝛾 ®𝑋 𝛾

®𝑋 = (0, 0) 1(✗) 0 0 1(✗) 0
2

3

2

3

®𝑋 = (0, 1) 1 0(✗) 1 0(✗) 1
2

3

®𝑋 = (1, 1) 0 1(✗) 0 1(✗) 0
2

3

®𝑋 = (1, 0) 1(✗) 0 0 1(✗) 0
2

3

𝜖 ®𝐾
2

3

2

3
N/A 1

𝜖 2

3

The proof is in Appendix B. Let 𝜆 be the number of SAT iterations that a SAT attacker needs to

find the correct key.

Theorem 4.5. The expected number of SAT iterations 𝐸 [𝜆] is lower bounded by 1

𝛾
.

Proof. In each SAT iteration, the average number of wrong keys pruned by the DI ®𝑋 is upper

bounded by 𝛾 |KW |. This is an upper bound because some of the wrong keys may have already

pruned out by DIs of previous iterations. Therefore,

𝐸 [𝜆] ≥ |K𝑊 |
𝛾 |KW |

=
1

𝛾

Hence proved. □

Theorems 4.4 and 4.5 explicitly point out that there exists an inverse relationship between 𝜖

and the lower bound of E[𝜆]. This quantifies the trade-off between them. This trade-off applies

to any logic locking scheme. Note that different input minterms may inject a different amount

of error at the application level. By assigning higher corruptibility to a few minterms with high

application-level impact, we can achieve high effectiveness while maintaining high SAT resilience

by keeping 𝛾 low and 𝐸 [𝜆] high. This is the main intuition behind SAS.

5 THE ARCHITECTURE AND PROPERTIES OF SAS
In Sec. 3 and 4, we demonstrated that two competing objectives exist for all logic locking schemes:

(1) Effectiveness: Any incorrect key should have a high appli-cation-level error impact.

(2) SAT resilience: The complexity of determining the correct key via SAT attacks should be

very high.

In this section, we introduce Strong Anti-SAT (SAS) logic locking scheme which aims to achieve

both objectives simultaneously. SAS guarantees an exponential expected SAT solving time while

having a significant impact on the accuracy of real-world applications. In SAS, instead of uniformly

distributing the error across all possible inputs, we identify certain input patterns which potentially

have a higher impact on the overall application-level error. We call these inputs critical minterms.
SAS is configured in such a way that any incorrect key corrupts at least 1 critical minterm. For the

other minterms, the corruptibility is low.

, Vol. 1, No. 1, Article . Publication date: May 2019.

Robust and Attack Resilient Logic Locking with a High Application-Level Impact 9

5.1 The SAS Block
Let M be the set of critical minterms and𝑚 = |M| be the number of critical minterms. For the

ease of implementation, we always choose𝑚 to be a power of 2. The basic locking infrastructure is

the SAS block which is illustrated in Fig. 6. The key ®𝐾 of an 𝑛-bit SAS block consists of two 𝑛-bit

sub-keys, ®𝐾1 and
®𝐾2. In order to describe the mechanism of the SAS locking scheme clearly, we use

a reverse order and start our illustration from the output side.

Original Circuit

Primary
Input

Primary
Output

Tamper-Proof
Memory

g(X’⊕K1)

g(X’⊕K2)

K1

K2

X

SAS Block

YSAS

H(X, K1)
X’

Fig. 6. The Architecture of SAS Configuration 1 with the Details of the SAS Block

𝑌𝑆𝐴𝑆 is the output of the SAS block. If 𝑌𝑆𝐴𝑆 = 1, a fault will be injected into the original circuit. 𝑔

is a function with an on-set-size of 1, i.e. only one input minterm will have output 1 and all others

will have output 0. 𝑔 has the opposite functionality of 𝑔. A function block ®𝑋 ′ = 𝐻 (®𝑋, ®𝐾1) is inserted
before 𝑔 and 𝑔 and it works as follows. If ®𝑋 is not a critical minterm, then ®𝑋 ′ = ®𝑋 . In this case,

only one combination of ®𝐾1 will make 𝑔 output 1, therefore ®𝑋 has a low corruptibility. If ®𝑋 is a

critical minterm, then for a portion of ®𝐾1,
®𝑋 is adjusted according to ®𝐾1 to obtain ®𝑋 ′

such that

𝑔(®𝑋 ′ ⊕ ®𝐾1) = 1 and hence the corruptibility is increased. ®𝑋 ′ = 𝐻 (®𝑋, ®𝐾1) further ensures that the
wrong keys that corrupts each critical minterm are mutually exclusive and evenly partition the set

of wrong keys. More specifically, as the partitioning is based on the ®𝐾1 part of the key, we have the

following. Let K1

®𝑋
= { ®𝐾1 |∀ ®𝐾2 such that (®𝐾1, ®𝐾2) ∈ K𝑊 , (®𝐾1, ®𝐾2) ∈ K ®𝑋 }. Then we have

∀ ®𝑋1, ®𝑋2 ∈ M, |K1

®𝑋1

| = |K1

®𝑋2

|, K1

®𝑋1

∧ K1

®𝑋2

= ∅, and
⋃
®𝑋 ∈M

K1

®𝑋
= Z𝑛

2
(4)

where 𝑛 is the number of bits in ®𝑋 , ®𝐾1, and
®𝐾2. This effect is illustrated in Table 3.

Table 3. Illustration of how𝑚 critical minterms partition the set of wrong keys

®𝐾1 of wrong keys
®𝑘1 · · · ®𝑘

2
𝑛
𝑚

®𝑘
2
𝑛
𝑚 +1

· · · ®𝑘
2

2
𝑛
𝑚

· · · ®𝑘
2
𝑛

critical

minterms

®𝑋1 • • •
®𝑋2 • • •
· · · · · ·
®𝑋𝑚 • •

non-

critical

minterms

®𝑋𝑚+1 •
®𝑋𝑚+2 •

· · ·
. . .

®𝑋
2
𝑛 •

The 2 configurations of SAS will be introduced in the rest of this section.

5.2 Configuration 1: SAS with One SAS Block
This configuration is illustrated in Fig. 6. In this configuration, there is one SAS block. As the

critical minterms evenly partition the set of wrong keys, the corruptibility of each critical minterm

is 𝛾𝑐 =
1

𝑚
. Below we derive the SAT resilience of this configuration assuming that the SAT solver

chooses a DI uniformly at random in each iteration. This is a common assumption [18, 29, 33]. The

, Vol. 1, No. 1, Article . Publication date: May 2019.

10 Yuntao Liu et. al.

SAT resilience is quantified using the expected number of SAT iterations 𝐸 [𝜆]. To start with, we

give 2 useful lemmas.

Lemma 5.1. LetD𝑖 be the set of DIs that have been chosen in the first 𝑖 iterations and ®𝑋 be a primary
input minterm. If K ®𝑋 ⊂ ⋃

®𝑋 ′∈D𝑖 K ®𝑋 ′ , then ®𝑋 cannot be the DI of any SAT iteration beyond 𝑖 .

The proof is given in Appendix C.

Lemma 5.2. For SAS Configuration 1, any critical minterm must exist in the set of DIs when SAT
finishes: ®𝑋 ∈ D𝜆 ∀ ®𝑋 ∈ M, where 𝜆 is the total number of SAT iterations and D𝜆 is the set of all DIs.

The proof is given in Appendix D.

Theorem 5.3. The expected number of SAT iterations of SAS Configuration 1 is

𝐸 [𝜆] = 2
𝑛 +𝑚

2

(5)

Proof. The total number of SAT iterations equals the total number of DIs. DIs consist of critical

minterms and non-critical minterms. By Lemma 5.2, all the critical minterms must be in the set

of DIs for SAT to terminate. Therefore, we only need to find the expected number of non-critical
minterms that are chosen as DIs. As illustrated in Table 3, ∀ ®𝑋 ′ ∉ M, ∃ exactly one ®𝑋 ∈ M such

that K ®𝑋 ′ ⊂ K ®𝑋 . By Lemma 5.1, if this ®𝑋 is chosen as DI before ®𝑋 ′
, then ®𝑋 ′

cannot be chosen in

further iterations any more. In other words, ®𝑋 ′
will count towards the total number of iterations

only when it is chosen before the critical minterm ®𝑋 . By our assumption that the DI is chosen

uniformly at random in each iteration, ®𝑋 ′
has a probability of

1

2
to be chosen as DI before ®𝑋 is

chosen. As this is true for any non-critical minterm, the expected number of SAT iterations is

𝐸 [𝜆] = 1

2
(2𝑛 −𝑚) +𝑚 = 2

𝑛+𝑚
2

. □

5.3 Configuration 2: SAS with Multiple Blocks
In this configuration, we have 𝑙 SAS blocks as illustrated in Fig. 7. Each SAS block takes an 𝑛-bit

primary input ®𝑋 , which is shared among all the SAS blocks, and a 2𝑛-bit key input. The output of

each SAS block is XOR’ed with a wire in the original circuit. Therefore, a fault is injected into the

original circuit if any SAS block has output 1. LetM 𝑗
be the set of critical minterms for the 𝑗 th SAS

block , 𝑗 = 1, 2, . . . , 𝑙 . For ease of implementation, we choose 𝑙 also to be a power of 2 and 𝑙 ≤ 𝑚.

The relationship between M 𝑗
and the total set of critical minterms M is that M1,M2, . . . ,M𝑙

have the same cardinality, are mutually exclusive, and evenly partition M, i.e.

|M1 | = |M2 | = · · · = |M𝑙 |, M𝑖 ∩M 𝑗 = ∅ ∀𝑖 ≠ 𝑗, and

𝑙⋃
𝑘=1

M𝑘 = M (6)

In this way, each SAS block has
𝑚
𝑙
critical minterms. As each critical minterm receives high

corruptibility from only one SAS block, the corruptibility of any critical minterm is 𝛾𝑐 =
𝑙
𝑚
.

Lemma 5.4. For SAS Configuration 2, any critical minterm must exist in the set of DIs when SAT
finishes: ®𝑋 ∈ D𝜆 ∀ ®𝑋 ∈ M, where 𝜆 is the total number of SAT iterations and D𝜆 is the set of all DIs.

The proof is given in Appendix E. Below, we will analyze the SAT resilience of this configuration

by deriving the expected number of SAT iterations.

Theorem 5.5. The expected number of SAT iterations of SAS Configuration 2 with 𝑙 SAS blocks and
𝑚 critical minterms is

𝐸 [𝜆] = 𝑙 · 2
𝑛 +𝑚
𝑙 + 1

(7)

, Vol. 1, No. 1, Article . Publication date: May 2019.

Robust and Attack Resilient Logic Locking with a High Application-Level Impact 11

Tamper-Proof
Memory

SAS
Block 1

Original Circuit

Primary
Input

Primary
Output

K11

K12

X

SAS
Block l

Kl1

Kl2

…

…

YSAS,1 YSAS,l

Fig. 7. Configuration 2 with 𝑙 SAS blocks

Proof. By Lemma 5.4, every critical minterm must count toward the total number of SAT

iterations. Therefore, we only need to derive the expected number of non-critical minterms that

are chosen as DIs.

For any non-critical minterm ®𝑋 ′ ∉ M, in the 𝑖th SAS block, there exists exactly one critical

minterm ®𝑋𝑖 such that the set of wrong keys that corrupt ®𝑋 ′
in this SAS block, K

𝑖, ®𝑋 ′ , is a subset

of the set of wrong keys that corrupt ®𝑋𝑖 , K𝑖, ®𝑋𝑖 . i.e. K𝑖, ®𝑋 ′ ⊂ K
𝑖, ®𝑋𝑖 . As the construction of the SAS

block makes this true for any individual SAS block and the critical minterms for each SAS block

are mutually exclusive, there are a total of 𝑙 such critical minterms. When all of these 𝑙 critical
minterms are chosen as DI, they will cover the entire set of wrong keys that corrupt ®𝑋 ′

. Therefore,

by Lemma 5.1, in order to include ®𝑋 ′
in the set of DIs, it must be selected before all 𝑙 critical

minterms are selected. This holds for any non-critical minterm.

By our assumption that the DIs are chosen uniformly at random in each SAT iteration, the

probability that each non-critical minterm will be chosen as DI is
𝑙
𝑙+1

. Therefore, the expected

number of SAT iterations is 𝐸 [𝜆] = 𝑙
𝑙+1

(2𝑛 −𝑚) +𝑚 = 𝑙 ·2𝑛+𝑚
𝑙+1

. □

The properties of both configurations of SAS are summarized in Table 4.

Table 4. Properties of the 2 Configurations of SAS

Configuration 𝑙 𝛾𝑐 𝐸 [𝜆]

1 1
1

𝑚
2
𝑛+𝑚

2

2 1 ≤ 𝑙 ≤𝑚 𝑙
𝑚

𝑙2𝑛+𝑚
𝑙+1

6 ROBUST SAS: A REMOVAL-RESILIENT SAS VARIANT
Although SAS achieves desirable SAT resilience and high corruptibility on critical minterms, it is

still vulnerable to removal attack. In such an attack, the attacker can identify and remove each SAS

block and replace their output wires with constant 0. In this way, the remaining part of the locked

circuit will have correct functionality. In order to address this drawback, we introduce Robust SAS

(RSAS), a variant of SAS that is resilient to removal attacks. In addition to adding an RSAS function

block, RSAS modifies the functionality of the original circuit. Therefore, unlike SAS, one cannot

obtain the correct functionality of the circuit by identifying and removing the RSAS block. We

will introduce the architecture of RSAS and show how any SAS configuration can be converted to

a functionally equivalent RSAS configuration. Due to the equivalence in functionality, an RSAS

configuration will have the same SAT resilience and effectiveness as its SAS counterpart.

, Vol. 1, No. 1, Article . Publication date: May 2019.

12 Yuntao Liu et. al.

6.1 RSAS Architecture and Relationship with SAS
A circuit locked by RSAS consists of an altered original circuit and one or more RSAS block(s). Fig.

8 illustrates the RSAS configuration with one RSAS block. Given the same set of critical minterms

and the same number of locking function blocks, locking a circuit with RSAS and SAS will yield the

same functionality. An RSAS-locked circuit can be obtained by converting a functionally equivalent

SAS-locked circuit in the following way.

Tamper-Proof
Memory

g(X’⊕K1)

g(X’⊕K2)
K1

K2

X

RSAS Block

YRSAS

H(X, K1)
X’

Altered Original Circuit

Primary
Input

Primary
Output

Functionality inverted for
all critical minterms

Fig. 8. A circuit locked with one RSAS block, equivalent to SAS Configuration 1

6.1.1 Altering the original circuit. Recall that 𝑙 is the number of SAS blocks in a SAS configuration.

For the 𝑗 th SAS block, 𝑗 = 1, 2, . . . , 𝑙 , the set of critical minterms it contains is denoted byM 𝑗
and

|M 𝑗 | = 𝑚
𝑙
, where𝑚 is the total number of critical minterms. In order to implement RSAS, we need

to modify the original circuit’s functionality. Notice that, for each SAS block, there is a wire in the

original circuit that is XOR’ed with the SAS block’s output. For the 𝑗 th SAS block, we locate this

wire. For each critical minterm in M 𝑗
, we invert the functionality of critical minterms at this wire.

This needs to be done for each 𝑗 in 𝑗 = 1, 2, . . . , 𝑙 . This is illustrated in Fig. 9.

Tamper-Proof
Memory

RSAS
Block 1

Altered Original Circuit

Primary
Input

Primary
Output

K11

K12

X

RSAS
Block l

Kl1

Kl2

…

YRSAS,1 YRSAS,l

Functionality inverted for
critical minterms in M1

Functionality inverted
for critical minterms

in M l…

Fig. 9. A circuit locked with multiple RSAS blocks, equivalent to SAS Configuration 2

6.1.2 Converting the SAS block into the RSAS block. The RSAS block is very similar to the SAS

block and there is only one difference between them. For the 𝑗 th SAS block, 𝑗 = 1, 2, . . . , 𝑙 , if the

primary input is a critical minterm inM 𝑗
, the output of RSAS block, 𝑌𝑅𝑆𝐴𝑆,𝑗 , is the inversion of the

output of SAS block, 𝑌𝑆𝐴𝑆,𝑗 . Recall that, for a SAS configuration with𝑚 critical minterms and 𝑙 SAS

blocks, each critical minterm’s corruptibility is 𝛾𝑐 =
𝑙
𝑚
. Hence for a portion of

𝑙
𝑚

wrong keys, 𝑌𝑆𝐴𝑆,𝑗

is 1. This is achieved by the ®𝑋 ′ = 𝐻 (®𝑋, ®𝐾1) function: if ®𝑋 is a critical minterm, then the 𝐻 (®𝑋, ®𝐾1)
function makes sure that for 𝛾𝑐 portion of wrong keys, we will have 𝑔(®𝑋 ′ ⊕ ®𝐾1) = 1. For RSAS, since

the functionality for critical minterms is inverted, the portion of wrong keys that makes 𝑌𝑅𝑆𝐴𝑆,𝑗 be

, Vol. 1, No. 1, Article . Publication date: May 2019.

Robust and Attack Resilient Logic Locking with a High Application-Level Impact 13

1 is 1 − 𝛾𝑐 = 𝑚−𝑙
𝑚

. This means the functionality of 𝐻 (®𝑋, ®𝐾1) needs to be modified in the following

way: if ®𝑋 is a critical minterm, then for 1 − 𝛾𝑐 portion of wrong keys, 𝑔(®𝑋 ′ ⊕ ®𝐾1) will output 1. For
non-critical input minterms, 𝑌𝑅𝑆𝐴𝑆 behaves in the same as 𝑌𝑆𝐴𝑆 . This is illustrated in Table 5.

Table 5. Illustration of RSAS block’s functionality. A ‘•’ stands for 𝑌𝑅𝑆𝐴𝑆 = 1.

®𝐾1 of wrong keys
®𝑘1 · · · ®𝑘

2
𝑛
𝑚

®𝑘
2
𝑛
𝑚 +1

· · · ®𝑘
2

2
𝑛
𝑚

· · · ®𝑘
2
𝑛

critical

minterms

®𝑋1 • • • • •
®𝑋2 • • • • •
· · · · · ·
®𝑋𝑚 • • • • • •

non-

critical

minterms

®𝑋𝑚+1 •
®𝑋𝑚+2 •

· · ·
. . .

®𝑋
2
𝑛 •

6.2 SAT Resilience and Effectiveness of RSAS
In Sec. 6.1, we introduced how to convert a SAS-locked circuit into an equivalent RSAS-locked

circuit. These steps essentially invert the functionality of each critical minterm at two places: the

first at the wire in the original circuit where RSAS is integrated, and the other at the RSAS block’s

output. Since these two wires are XOR’ed, the two inversions will cancel out which makes the

RSAS-locked circuit functionally equivalent to the SAS-locked circuit. Due to the equivalence

in functionality, the derivations of SAS’s SAT resilience and effectiveness will also hold for RSAS.

Therefore, Table 4 is also the summary of these properties of RSAS.

7 CHOOSING CRITICAL MINTERMS
The critical minterms for injecting large errors should be selected judiciously. A careful analysis of

the workload would help identify these typical minterms. Generally these minterms would be very

few as compared to the overall input space of the functional modules. Here we describe how to

select the critical minterms. As mentioned in Sec. 3, we use PARSEC and ML models as application

benchmarks. For the PARSEC (generic) benchmarks, we arbitrarily choose critical minterms from

the input minterms that exist in all the application benchmarks. We take a similar approach for

ML benchmarks. A significant part of an ML-based application is the parameters of the ML model

and it turns out that the parameter values of most ML models follow a similar distribution. For

example, Figure 10 shows the distribution of parameters of the LeNet (MNIST dataset) and CaffeNet

(ISLVRC-2012 dataset) models. These two are the smallest benchmark and the largest benchmark,

respectively. The parameter distributions are similar across ML benchmarks and many other ML

models. This kind of similarity can be also found among generic applications.

We select a subset of parameter values to be critical minterms based on their application-lavel

impact. The selected critical minterms should cause significant application-level error. Fig. 10 also

shows the accuracy loss of the ML model in the following experiment: for each input minterm, we

measure the accuracy loss of the ML model when every computation involving this very minterm

is corrupted while no other minterm is corrupted. As the input minterm distributions are similar

among the same type of applications, the flexibility of SAS/RSAS allows the designer to choose

a configuration and a combination of critical minterms that work well in securing the intended

applications without compromising SAT resilience.

, Vol. 1, No. 1, Article . Publication date: May 2019.

14 Yuntao Liu et. al.

1.0 0.5 0.0 0.5 1.0
Parameter values

10 6

10 4

10 2

Fr
eq

ue
nc

y

MNIST Benchmark

0.0

0.5

Ac
cu

ra
cy

 L
os

s

1 0 1
Parameter values

10 5

10 3

10 1

Fr
eq

ue
nc

y

ISLVRC_2012 Benchmark

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

 L
os

s

Fig. 10. Weight Distribution (Blue Histogram, Left Y Axis) and Application-Level Accuracy Loss (Red Line,
Right Y Axis) of LeNet and CaffeNet when the corresponding inputs were locked

8 EXPERIMENTS & COMPARISONWITH SFLL
This section shows the experimental results of SAS and RSAS as well as the comparison with SFLL.

Recall that, as illustrated in Fig. 3, we obtain the gate-level netlists of the multiplier within a 32-bit

80386 processor by synthesizing the high-level description using Cadence RTL Compiler. Then we

lock the netlist using various SAS and RSAS configurations and SFLL-flex with the same set of

critical minterms. Note that the critical minterms are selected according to the method described in

Sec. 7. The architecture-level simulation is conducted by a modified GEM5 [2] simulator where

error is injected into the locked processor module according to the hardware error profile due to

the wrong key. We conduct the following experiment to verify the SAT resilience and effectiveness

of SAS and RSAS and compare them with SFLL.

8.1 SAT Resilience
We first verify whether the SAT resilience of SAS/RSAS (i.e. the actual number of SAT iterations)

matches what we have derived in Sec. 5. The SAT resilience of SAS/RSAS and SFLL is also compared.

We lock the multiplier in a 32-bit 80386 processor with SAS and RSAS as well as SFLL. Fig. 11 shows

the actual and expected number of SAT iterations of multipliers locked with SAS and RSAS. These

numbers are compared to the actual number of iterations of SFLL. In these locking configurations,

we use 14 bits of primary input for locking purposes (𝑛 = 14) and experiment with each feasible

configuration with up to 4 critical minterms. We can observe that SAS and RSAS have similar

numbers of actual SAT iterations and they are both close to the expected value. When there is

more than one critical minterms, SAS and RSAS exhibit higher SAT resilience than SFLL. This is

because the corruptibility of each critical minterm in SFLL is almost 1 no matter how many critical

minterms there are. This compromises its SAT resilience.

Fig. 12 compares the actual SAT iterations of SAS and SFLL. In Fig. 12a, it can be observed that

SAS’s SAT complexity is higher than that of SFLL by a roughly constant factor when𝑚 is fixed

at 4. Note that the same set of four critical minterms are used for each locking scheme. Among

various SAS configurations, a larger 𝑙 comes with higher SAT resilience as expected. In Fig. 12b, we

vary the critical minterm count (𝑚) from 4 to 32 and demonstrate its impact on the SAT resilience

of SAS and SFLL. While SAS configurations become stronger with more critical minterms, SFLL

becomes weaker. Therefore, SAS is more SAT resilient and gives designers more flexibility when

more critical minterms are needed.

8.2 Effectiveness
We evaluate the effectiveness of SAS/RSAS and SFLL at the application level using PARSEC [1]

and ML benchmarks as listed in Table 1. Due to the functional equivalence of SAS and RSAS, they

, Vol. 1, No. 1, Article . Publication date: May 2019.

Robust and Attack Resilient Logic Locking with a High Application-Level Impact 15

Fig. 11. Actual and expected number of SAT iterations of SAS and RSAS, compared with SFLL.

8 9 10 11 12 13 14 15 16
Key length n

102

103

104

SA
T

Ite
ra

tio
ns

SAS Config 1 l = 1
SAS Config 2 l = 2
SAS Config 2 l = 4
SFLL

(a) Varying key length (𝑛), fixing # critical minterms𝑚 = 4

5 10 15 20 25 30
Critical minterm count m

0

10000

20000

30000

40000

50000

60000
SA

T
Ite

ra
tio

ns

SAS Config 1 l = 1
SAS Config 2 l = 2
SAS Config 2 l = 4
SFLL

(b) Varying # critical minterms (𝑚), fixing key
length 𝑛 = 16

Fig. 12. The observed SAT iterations of SAS and SFLL by varying key length and critical minterm count.

will have the same architecture-level effects and we use the same functional model to perform

architecture-level simulation of SAS and RSAS. In our experiments, various numbers of critical

minterms are locked. The same set of critical minterms are used for SAS/RSAS and SFLL in each

experiment. The critical minterms are chosen according to the methods described in Sec. 7. For SAS,

we choose 𝑙 = 1 when𝑚 = 1 and 𝑙 = 2 when𝑚 ≥ 2. Figs. 13 and 14 show that both SAS/RSAS and

SFLL are effective at the application level for both generic and ML-based applications. SAS/RSAS

achieves high application-level effectiveness and exponential SAT resiliency at the same time.

Considering that SAS/RSAS’s SAT resilience is not compromised with the increase in𝑚 as opposed

to SFLL (as shown in Figs. 11 and 12b), SAS/RSAS is a significant improvement over SFLL.

8.3 Area, Power, and Delay Overhead of SAS, RSAS, and SFLL
Now that we have demonstrated the SAT resilience of SAS and RSAS and their application-level

effectiveness, we evaluate their area, power, and delay overhead. The overhead is also compared

with SFLL. In our evaluation, we use 32 bits from the primary input for locking (𝑛 = 32) and lock

up to 4 critical minterms (𝑚 = 1, 2, 4). We synthesize the original and locked circuits using Cadence

RTL Compiler using SAED 90nm process. Figs. 15, 16, and 17 show the area, power, and delay

overhead values, respectively. Compared with SFLL, on average, SAS and RSAS have 2.22% and

1.49% more area overhead, 0.43% more and 0.04% less power overhead, 0.93% and 0.71% more delay

overhead, respectively. These are not significant increases in overhead and should be worth the

gain in SAT resilience.

, Vol. 1, No. 1, Article . Publication date: May 2019.

16 Yuntao Liu et. al.

1 2 4 8
Critical minterm count (m)

0.0

0.2

0.4

0.6

0.8

1.0

%
 o

f B
en

ch
m

ar
k

Ru
ns

 w
ith

 In

co
rre

ct
 O

ut
co

m
e blackscholes

bodytrack
dedup
ferret
fluidanimate
freqmine
streamcluster
swaptions
x264

(a) SAS/RSAS on PARSEC

1 2 4 8
Critical minterm count (m)

0.0

0.2

0.4

0.6

0.8

1.0

%
 o

f B
en

ch
m

ar
k

Ru
ns

 w
ith

 In

co
rre

ct
 O

ut
co

m
e blackscholes

bodytrack
dedup
ferret
fluidanimate
freqmine
streamcluster
swaptions
x264

(b) SFLL on PARSEC

Fig. 13. The application-level effectiveness of SAS/RSAS and SFLL on PARSEC and ML benchmarks

1 2 4 8
Critical minterm count (m)

0.0

0.2

0.4

0.6

0.8

1.0

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

 L
os

s

LeNet
Cifar
SVHN
Oxford102
ISLVRC 2012

(a) SAS/RSAS on ML

1 2 4 8
Critical minterm count (m)

0.0

0.2

0.4

0.6

0.8

1.0

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

 L
os

s

LeNet
Cifar
SVHN
Oxford102
ISLVRC 2012

(b) SFLL on ML

Fig. 14. The application-level effectiveness of SAS/RSAS and SFLL on PARSEC and ML benchmarks

Fig. 15. Area overhead of SAS and RSAS compared with SFLL

9 CONCLUSION
In this work, we investigate logic locking techniques to secure both generic and error-resilient

workloads running on locked processors. We motivate our work by demonstrating the insufficiency

of the state-of-the-art logic locking scheme in securing such applications. We point out that this is

due to the fundamental trade-off between SAT resilience (SAT attack complexity) and effectiveness
(error rate of wrong keys) of logic locking. We formally prove this trade-off. In order to address this

dilemma, we propose Strong Anti-SAT (SAS) where a set of critical minterms are assigned higher

corruptibility in order to ensure high application-level impact. Based on SAS, we also propose

Robust SAS (RSAS) to thwart removal attacks on logic locking. RSAS is functionally equivalent to

SAS and has the same SAT resilience and effectiveness. Experimental results show that SAS and

, Vol. 1, No. 1, Article . Publication date: May 2019.

Robust and Attack Resilient Logic Locking with a High Application-Level Impact 17

Fig. 16. Power overhead of SAS and RSAS compared with SFLL

Fig. 17. Delay overhead of SAS and RSAS compared with SFLL

RSAS secure processors against SAT attack by ensuring exponential SAT attack complexity and high

application-level impact simultaneously given any wrong key. We also evaluate the area, power,

and delay overhead of SAS and RSAS and compare it with SFLL. It is shown that SAS and RSAS

have modest increase in overhead. In summary, RSAS exhibits a higher SAT resilience than SFLL

when multiple critical minterms are secured, while also maintaining equivalent effectiveness and

removal attack resilience. Therefore, RSAS constitutes a significant improvment over SFLL-based

locking.

ACKNOWLEDGMENTS
This work is supported by AFOSR MURI under Grant FA9550-14-1-0351 and Northrop Grumman

Corporation and University of Maryland Seedling Grant.

REFERENCES
[1] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. The PARSEC benchmark suite: Characterization

and architectural implications. In Proceedings of the 17th international conference on Parallel architectures and compilation
techniques. ACM, 72–81.

[2] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali Saidi, Arkaprava Basu, Joel Hestness,

Derek R Hower, Tushar Krishna, Somayeh Sardashti, et al. 2011. The gem5 simulator. ACM SIGARCH Computer
Architecture News 39, 2 (2011), 1–7.

[3] Abhishek Chakraborty, Nithyashankari Gummidipoondi Jayasankaran, Yuntao Liu, Jeyavijayan Rajendran, Ozgur

Sinanoglu, Ankur Srivastava, Yang Xie, Muhammad Yasin, and Michael Zuzak. 2019. Keynote: A Disquisition on Logic

Locking. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (2019).
[4] Abhishek Chakraborty, Yuntao Liu, and Ankur Srivastava. 2018. TimingSAT: timing profile embedded SAT attack. In

Proceedings of the International Conference on Computer-Aided Design. ACM, 6.

[5] Abhishek Chakraborty, Yang Xie, and Ankur Srivastava. 2017. Template Attack Based Deobfuscation of Integrated

Circuits. In Computer Design (ICCD), 2017 IEEE International Conference on. IEEE, 41–44.
[6] Abhishek Chakraborty, Yang Xie, and Ankur Srivastava. 2018. GPU obfuscation: attack and defense strategies. In

Proceedings of the 55th Annual Design Automation Conference. ACM, 122.

, Vol. 1, No. 1, Article . Publication date: May 2019.

18 Yuntao Liu et. al.

[7] J Deng, A Berg, S Satheesh, H Su, A Khosla, and L Fei-Fei. 2012. ILSVRC-2012, 2012. URL http://www. image-net.
org/challenges/LSVRC (2012).

[8] Hadi Mardani Kamali, Kimia Zamiri Azar, Houman Homayoun, and Avesta Sasan. 2019. Full-Lock: Hard Distributions

of SAT Instances for Obfuscating Circuits using Fully Configurable Logic and Routing Blocks. In Proceedings of the
56th Annual Design Automation Conference 2019. ACM, 89.

[9] Alex Krizhevsky and Geoffrey Hinton. 2009. Learning multiple layers of features from tiny images. (2009).

[10] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-based learning applied to document

recognition. Proc. IEEE 86, 11 (1998), 2278–2324.

[11] Yuntao Liu, Michael Zuzak, Yang Xie, Abhishek Chakraborty, and Ankur Srivastava. 2020. Strong Anti-SAT: Secure

and Effective Logic Locking. In Twenty-first International Symposium on Quality Electronic Design. IEEE, 199–205.
[12] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. 2011. Reading digits in natural

images with unsupervised feature learning. In NIPS workshop on deep learning and unsupervised feature learning,
Vol. 2011. 5.

[13] Xuan Thuy Ngo, Jean-Luc Danger, Sylvain Guilley, Tarik Graba, Yves Mathieu, Zakaria Najm, and Shivam Bhasin.

2017. Cryptographically Secure Shield for Security IPs Protection. IEEE Trans. Comput. 66, 2 (2017), 354–360.
[14] M-E. Nilsback and A. Zisserman. 2008. Automated Flower Classification over a Large Number of Classes. In Proceedings

of the Indian Conference on Computer Vision, Graphics and Image Processing.
[15] Jeyavijayan et al. Rajendran. 2012. Security analysis of logic obfuscation. In Proceedings of the 49th Annual Design

Automation Conference. ACM, 83–89.

[16] Jeyavijayan et al. Rajendran. 2015. Fault Analysis-Based Logic Encryption. Computers, IEEE Transactions on 64, 2

(2015), 410–424.

[17] Jarrod A et al. Roy. 2008. EPIC: Ending piracy of integrated circuits. In Proceedings of the conference on Design,
Automation and Test in Europe. ACM, 1069–1074.

[18] Abhrajit Sengupta, Mohammed Nabeel, Muhammad Yasin, and Ozgur Sinanoglu. 2018. ATPG-based cost-effective,

secure logic locking. In 2018 IEEE 36th VLSI Test Symposium (VTS). IEEE, 1–6.
[19] Kaveh et al. Shamsi. 2017. Appsat: Approximately deobfuscating integrated circuits. In Hardware Oriented Security and

Trust (HOST), 2017 IEEE International Symposium on. IEEE, 95–100.
[20] Yuanqi Shen and Hai Zhou. 2017. Double dip: Re-evaluating security of logic encryption algorithms. In Proceedings of

the on Great Lakes Symposium on VLSI 2017. ACM, 179–184.

[21] Deepak Sirone and Pramod Subramanyan. 2019. Functional analysis attacks on logic locking. In 2019 Design, Automation
& Test in Europe Conference & Exhibition (DATE). IEEE, 936–939.

[22] Deepak Sirone and Pramod Subramanyan. 2020. Functional analysis attacks on logic locking. IEEE Transactions on
Information Forensics and Security 15 (2020), 2514–2527.

[23] Pramod et al. Subramanyan. 2015. Evaluating the security of logic encryption algorithms. In Hardware Oriented
Security and Trust (HOST), 2015 IEEE International Symposium on. IEEE, 137–143.

[24] Yang Xie, Chongxi Bao, Yuntao Liu, and Ankur Srivastava. 2016. 2.5 D/3D integration technologies for circuit

obfuscation. In 2016 17th International Workshop on Microprocessor and SOC Test and Verification (MTV). IEEE, 39–44.
[25] Yang Xie, Chongxi Bao, and Ankur Srivastava. 2017. Security-Aware 2.5 D Integrated Circuit Design Flow Against

Hardware IP Piracy. Computer 5 (2017), 62–71.
[26] Yang Xie and Ankur Srivastava. 2017. Delay locking: Security enhancement of logic locking against ic counterfeiting

and overproduction. In Proceedings of the 54th Annual Design Automation Conference 2017. ACM, 9.

[27] Yang Xie and Ankur Srivastava. 2018. Anti-SAT: Mitigating SAT Attack on Logic Locking. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (2018).

[28] Yang et al. Xie. 2016. Mitigating sat attack on logic locking. In International Conference on Cryptographic Hardware and
Embedded Systems. Springer, 127–146.

[29] Muhammad Yasin, Bodhisatwa Mazumdar, Jeyavijayan JV Rajendran, and Ozgur Sinanoglu. 2017. TTLock: Tenacious

and traceless logic locking. In 2017 IEEE International Symposium on Hardware Oriented Security and Trust (HOST).
IEEE, 166–166.

[30] Muhammad Yasin, Bodhisatwa Mazumdar, Ozgur Sinanoglu, and Jeyavijayan Rajendran. 2017. Removal attacks on

logic locking and camouflaging techniques. IEEE Transactions on Emerging Topics in Computing (2017).

[31] Muhammad Yasin, Bodhisatwa Mazumdar, Ozgur Sinanoglu, and Jeyavijayan Rajendran. 2017. Security analysis of

anti-sat. In 2017 22nd Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE, 342–347.
[32] Muhammad Yasin, Jeyavijayan JV Rajendran, Ozgur Sinanoglu, and Ramesh Karri. 2016. On improving the security of

logic locking. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 35, 9 (2016), 1411–1424.
[33] Muhammad Yasin, Abhrajit Sengupta, Mohammed Thari Nabeel, Mohammed Ashraf, Jeyavijayan JV Rajendran, and

Ozgur Sinanoglu. 2017. Provably-Secure Logic Locking: From Theory To Practice. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security. ACM, 1601–1618.

, Vol. 1, No. 1, Article . Publication date: May 2019.

Robust and Attack Resilient Logic Locking with a High Application-Level Impact 19

[34] Muhammad et al. Yasin. 2016. SARLock: SAT attack resistant logic locking. In Hardware Oriented Security and Trust
(HOST), 2016 IEEE International Symposium on. IEEE, 236–241.

[35] M. Zuzak and A. Srivastava. 2019. Memory Locking: An Automated Approach to Processor Design Obfuscation. In

2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). 541–546. https://doi.org/10.1109/ISVLSI.2019.00103

A PROOF OF THEOREM 2.1
Proof. This can be proved by contradiction: suppose the key returned by the last step of SAT

attack is a wrong key. This implies that there must exist a primary input ®𝑋 such that

𝐶 (®𝑋, ®𝐾𝑐 , ®𝑌𝑐) ∧𝐶 (®𝑋, ®𝐾, ®𝑌) ∧ (®𝑌𝑐 ≠ ®𝑌)

where ®𝐾 is the actual key, ®𝑌𝑐 is the output with returned key ®𝐾𝑐 and ®𝑌 is the correct output according

to the actual key ®𝐾 . ®𝑋 cannot be a previously found DI because otherwise ®𝐾𝑐 will not satisfy (3).

We can see that ®𝑋 qualifies for a DI: just assign ®𝐾𝛼 = ®𝐾𝑐 and ®𝐾𝛽 = ®𝐾 . This means that (2) is still

satisfiable and contradicts the criteria that no more DI can be found before the SAT attack goes to

the final step.

Hence proved. □

B PROOF OF THEOREM 4.4
Proof. Recall that

𝜖 =
1

|K𝑊 |
∑

®𝐾 ∈K𝑊
𝜖 ®𝐾 =

1

|K𝑊 |
∑

®𝐾 ∈K𝑊

|X®𝐾 |
2
𝑛

=
1

2
𝑛 |K𝑊 |

∑
®𝐾 ∈K𝑊

|X®𝐾 |

and

𝛾 =
1

2
𝑛

∑
®𝑋 ∈{0,1}𝑛

𝛾 ®𝑋 =
1

2
𝑛

∑
®𝑋 ∈{0,1}𝑛

|K ®𝑋 |
|K𝑊 |

=
1

2
𝑛 |K𝑊 |

∑
®𝑋 ∈{0,1}𝑛

|K ®𝑋 |

Therefore, in order to prove 𝜖 = 𝛾 , we only need to prove∑
®𝐾 ∈K𝑊

|X®𝐾 | =
∑

®𝑋 ∈{0,1}𝑛
|K ®𝑋 | (8)

Let us consider the following bipartite graph 𝐺 = (X,K𝑊 , E) where X is {0, 1}𝑛 which is the set

of all the possible input minterms, K𝑊
is the set of wrong keys, and E = {(®𝑋, ®𝐾) | ®𝑋 ∈ X and ®𝐾 ∈

K𝑊
, ®𝐾 corrupts ®𝑋 }. Both sides of Eq. 8 denote the total number of elements in E and hence must

be equal. □

C PROOF OF LEMMA 5.1
Proof. Recall that Equation (2) gives the SAT formula for each SAT iteration:

𝐶 (®𝑋𝑖 , ®𝐾𝛼 , ®𝑌𝛼) ∧𝐶 (®𝑋1, ®𝐾𝛽 , ®𝑌𝛽) ∧ (®𝑌𝛼 ≠ ®𝑌𝛽)
𝑖−1∧
𝑗=1

(𝐶 (®𝑋 𝑗 , ®𝐾𝛼 , ®𝑌𝑗) ∧𝐶 (®𝑋 𝑗 , ®𝐾𝛽 , ®𝑌𝑗))

To satisfy the first line, at one of ®𝐾𝛼 and ®𝐾𝛽 must be a wrong key that corrupts ®𝑋 . However, since
any wrong key that corrupts ®𝑋 also corrupts at least 1 previously found DI, this wrong key cannot

satisfy the second line. Hence such ®𝑋 cannot be the DI in future iterations. □

, Vol. 1, No. 1, Article . Publication date: May 2019.

https://doi.org/10.1109/ISVLSI.2019.00103

20 Yuntao Liu et. al.

D PROOF OF LEMMA 5.2
Proof. Recall that 𝑔 has on-set size 1. Let ®𝑃 be the very input that makes 𝑔(®𝑃) = 1. ∀ ®𝑋 ∈ M, let

®𝐾1 = ®𝑋 ⊕ ®𝑃 . Then, any ®𝐾 = (®𝐾1, ®𝐾2) ∈ K𝑊
is a wrong key that only corrupts ®𝑋 . Therefore, ®𝑋 has

to be chosen as a DI to prune out this wrong key. □

E PROOF OF LEMMA 5.4
Proof. This is a natural extension to Lemma 5.2. Let ®𝑋 be a critical minterm and ®𝑋 ∈ M 𝑗

. Recall

that 𝑔 has on-set size 1. Let ®𝑃 be the very input that makes 𝑔(®𝑃) = 1. ∀ ®𝑋 ∈ M 𝑗
, let

®𝑘 = ®𝑋 ⊕ ®𝑃 . Then,
let us consider the following wrong key ®𝐾 = (®𝐾1, ®𝐾2, . . . , ®𝐾𝑙) ∈ K𝑊

which is composed as follows:

®𝐾 𝑗 = (®𝑘, ®𝐾 𝑗

2
) ∈ K𝑊

𝑗
where K𝑊

𝑗
is the set of wrong keys for the 𝑗 th SAS block. For any 𝑖 = 1, 2, . . . , 𝑙

that 𝑖 ≠ 𝑗 , ®𝐾𝑖 ∈ K𝐶
𝑖 where K𝐶

𝑖 is the set of correct keys for the 𝑖th SAS block. Such a key ®𝐾 is a

wrong key that only corrupts ®𝑋 . Therefore, ®𝑋 has to be chosen as a DI to prune out this wrong

key. □

, Vol. 1, No. 1, Article . Publication date: May 2019.

	Abstract
	1 Introduction
	2 Background
	2.1 Attack Model
	2.2 SAT Attack
	2.3 Existing Logic Locking Schemes

	3 Insufficiency of SFLL for Real-World Applications
	4 Fundamental Trade-off for All Logic Locking Schemes
	5 The Architecture and Properties of SAS
	5.1 The SAS Block
	5.2 Configuration 1: SAS with One SAS Block
	5.3 Configuration 2: SAS with Multiple Blocks

	6 Robust SAS: a Removal-Resilient SAS Variant
	6.1 RSAS Architecture and Relationship with SAS
	6.2 SAT Resilience and Effectiveness of RSAS

	7 Choosing Critical Minterms
	8 Experiments & Comparison with SFLL
	8.1 SAT Resilience
	8.2 Effectiveness
	8.3 Area, Power, and Delay Overhead of SAS, RSAS, and SFLL

	9 Conclusion
	Acknowledgments
	References
	A Proof of Theorem 2.1
	B Proof of Theorem 4.4
	C Proof of Lemma 5.1
	D Proof of Lemma 5.2
	E Proof of Lemma 5.4

