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Logic obfuscation is a prominent approach to protect intellectual property within integrated circuits during fabrication. Many

attacks on logic locking have been proposed, particularly in the Boolean satiiability (SAT) attack family, leading to the

development of stronger obfuscation techniques. Some obfuscation techniques, including Full-Lock and InterLock, resist

SAT attacks by inserting SAT-hard instances into the design, making the SAT attack infeasible. In this work, we observe that

this class of obfuscation leaves most of the original design topology visible to an attacker, who can reverse-engineer the

original design given the functionality of the SAT-hard instance. We show that an attacker can expose the SAT-hard instance

functionality of Full-Lock or InterLock with a polynomial number of queries of its inputs and outputs. We then develop a

mathematical framework showing how the functionality can be inferred using only a black-box oracle, as is commonly used

in attacks in the literature. Using this framework, we develop a novel attack which allows a SAT-capable attacker to eiciently

unlock designs obfuscated with Full-Lock. Our attack recovers the intellectual property from these obfuscation techniques

which were previously thought secure. We empirically demonstrate the potency of our novel sensitization attack against

benchmark circuits obfuscated with Full-Lock.

CCS Concepts: · Hardware→ Combinational circuits; · Security and privacy→ Hardware reverse engineering.

Additional Key Words and Phrases: Logic Obfuscation, Full-Lock, Untrusted Foundry, Reverse Engineering

1 Introduction

The increasing cost and complexity of semiconductor fabrication has driven integrated circuit (IC) designers to
rely on unailiated and untrusted third parties for manufacturing. Such reliance raises security concerns due to
the capability of untrusted foundries to reverse-engineer, pirate, and overproduce intellectual property using the
design iles provided for fabrication [21]. Such an approach exposes IC design houses to substantial inancial and
security risks.

Logic obfuscation (also known as logic locking) has been developed to mitigate these security threats during
fabrication. Techniques within this family integrate auxiliary logic into a combinational circuit driven by both
internal logic signals and a number of additional primary inputs, which are referred to as key inputs. For a small
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subset of all possible key input values, the auxiliary logic does not change the design functionality. However, for
most key input values, error is introduced to the circuit with the intention of making pirated chips unreliable. The
IC design house knows at least 1 value in the set which maintains functional correctness. After manufacturing,
the IC design house assigns a permanent value to the key inputs from the functionally correct set. This value is
stored in tamper-proof memory, and is referred to as the secret key or just the key. By withholding the secret key
from an untrusted fabrication partner, the correct functionality of a design is hidden. Such an approach mitigates
security threats during fabrication. See [7, 10, 41] for a comprehensive survey of logic obfuscation research.

In response to logic obfuscation, a number of techniques were developed to łunlock" the obfuscated design by
either reverse-engineering the circuit by removing the auxiliary logic [2, 34, 38] or identifying a functionally
correct key [18]. A family of Boolean satisiability (SAT) attacks, which take the latter approach, are particularly
prevalent in the literature [3, 11, 30]. These attacks use SAT solvers to eiciently identify functionally correct key
input values. At the time of its introduction, the SAT attack could unlock any existing form of logic obfuscation,
such as [5, 19, 22]. SAT-style attacks are so potent against logic obfuscation that SAT-resilience has become a
critical metric for any new logic obfuscation technique [43].

1.1 Contributions

In this work, we explore Full-Lock and InterLock [13, 14], which are logic obfuscation techniques which resist
SAT-style attacks by inserting instances of known SAT-hard structures into the circuit. This increases the runtime
of the underlying SAT problem solved in SAT-style attacks, making them infeasible. However, we observe that
the only information obfuscated by these techniques is the correct routing of signals from the SAT-hard instance
inputs to its outputs, with the rest of the netlist topology remaining unchanged. Therefore, if the attacker learns
the relationship between the inputs and outputs of the SAT-hard instance, the obfuscation process can be reversed
and an obfuscation-free circuit produced.
In our previous work [16], we have shown that for Full-Lock and InterLock, it is possible to recover the

obfuscation-free circuit from a polynomial number of queries of the input-output pairs of the SAT-hard instance.
We developed an input stepping attack which exploited the topological rigidity of these types of obfuscation to
infer the inputs and outputs of the SAT-hard instance from the obfuscated netlist and black-box oracle, which are
available to a SAT-capable attacker. We showed empirically that our methodology allows an attacker to reverse
engineer netlists obfuscated with Full-Lock, which was not possible with prior techniques.
In this work, we review this attack method and justify it with additional mathematical rigor. We reine the

attack to signiicantly reduce both the number of oracle queries and attack runtime. We also prove our assertion
that the input-stepping attack is also efective against InterLock.

The contributions of this work can be summarized as follows:

• We review our sensitization attack which queries the inputs and outputs of the SAT-hard instance placed in a
design during obfuscation with Full-Lock. This attack is empirically shown to defeat Full-Lock obfuscation.

• We prove 2 theorems which, together, show that our sensitization attack defeats Full-Lock, a SAT-proof
obfuscation technique, with a linear number of queries of the SAT-hard instance.

• We introduce primary input reuse to the sensitization attack, which reduces runtime by 51.9% and oracle
queries by nearly 50%.

• We provably reduce the more recent InterLock to Full-Lock in the context of our sensitization attack. We
identify the necessary conditions and how an attacker can achieve them. We describe a method to unlock
InterLock with a polynomial number of SAT-hard instance queries.

• We describe the process by which an attacker can remove the SAT-hard instance from the netlist and layout
after executing our attack. We also guarantee the timing correctness of the obfuscation-free design. This
ensures that the attacker can produce functionally correct counterfeits of the design.
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• Wediscuss how designers can prevent the sensitization attack by embedding functions ofmultiple obfuscated
signals inside the SAT-hard instance.

2 Preliminaries

2.1 Atacker Model

In this work, we assume a SAT-capable adversary common in recent logic obfuscation research, such as [13, 14, 24ś
26, 33, 40, 43]. This adversary has access to 1) a locked netlist for the obfuscated circuit, which can be obtained via
reverse engineering the GDSII iles provided for fabrication, and 2) a black-box oracle of the obfuscated circuit,
which can be obtained from IC test facilities or the open market. While the secret key cannot be read from this
oracle circuit, it does allow the adversary to query speciic inputs and identify the correct corresponding output
for the obfuscated circuit.

We also make the assumption 3) that the attacker can locate the SAT-hard instance inside the obfuscated netlist.
This assumption is reasonable because all key inputs connect to the SAT-hard instance and because the SAT-hard
instance contains many copies of the same structure.

2.2 The SAT Atack

The SAT attack was introduced in [30], and defeated all previously developed logic obfuscation techniques. This
iterative attack makes the assumption that the attacker has access to a black-box oracle which can be queried for
primary output values corresponding to the applied primary inputs. In one iteration, the attacker formulates a
Boolean satisiability (SAT) problem which is satisied by two key values which are consistent with all previous
oracle queries but produce a diferent primary output for at least one primary input value. The attacker then
applies that input for that iteration’s oracle query. This ensures that at least one of the keys which satisies the
current iteration cannot be used to satisfy the SAT problem in the next iteration because at most one of these can
produce the correct primary outputs when the chosen input is applied. The original SAT attack quickly prompted
the creation of many new SAT-resistant obfuscation techniques [20, 32, 33, 37] which were then targeted by new
SAT-style attacks [3, 4, 11, 27, 29].
One common approach to achieve SAT resilience is to scale the number of SAT attack iterations required to

unlock the circuit by limiting the number of corrupted input-output pairs caused by each wrong key, as derived in
[42, 43]. This family of approaches includes prominent techniques such as [15, 24ś26, 33, 35, 39, 40]. While such
approaches certainly achieve SAT resilience, they are limited in the amount of error they can inject, prompting
concerns regarding their eicacy in securing an obfuscated system as a whole [43, 44].

To address these limitations, a second approach to SAT-resilient obfuscation techniques was developed lever-
aging SAT-hard instances to rapidly scale the runtime of successive SAT attack iterations, rather than increasing
the number of iterations required to unlock the design [23, 28]. This family includes techniques such as Full-Lock
[13] and Interlock [14]. The advantage of such an approach is that sizable error rates can be injected while
maintaining resilience to SAT-style attacks [13, 14]. In this work, we narrow our scope to obfuscation techniques
using this second approach.

2.3 Obfuscation with Full-Lock

One class of SAT-resilient techniques exploits characteristics of the DavisśPutnamśLogemannśLoveland (DPLL)
algorithm used to solve the SAT attack’s underlying SAT problem. These techniques place instances in the design
of modules known to be SAT-hard, greatly increasing the runtime of successive SAT iterations and resulting in
infeasibly long SAT attack runtimes to recover a functionally correct key.
In Full-Lock [13], which we primarily focus on in this work, this module is a switching network whose

functionality is made key-dependent through the use of programmable logic and routing (PLR) blocks. Each node
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Fig. 1. Diagram of obfuscation with Full-Lock, showing (a) the key-driven switch-box (SwB) circuit which exchanges the

routing of two signals, (b) one possible switching network configuration which forms the SAT-hard instance, and (c) a

visualization of the instance with its fanin and fanout within the obfuscated netlist, with relevant signals labeled.
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Fig. 2. Diagram of the SAT-hard instance used in InterLock, showing the switch-box (SwB) circuit modified from Full-Lock to

include two extra inputs going to function blocks. These replace the inverters originally present in Full-Lock.

in the network is a switch-box (SwB) which may exchange the input to output routing and invert each of its 2
input signals according to 3 key inputs. As a result, the outputs of the SAT-hard instance are a permutation and
possible inversion of its inputs. Figure 1 displays the construction of the switch-boxes present in Full-Lock as
well as a sample network topology and the placement of the SAT-hard instance in the netlist.

Full-Lock is designed to take advantage of longer runtimes for the DPLL algorithm for problems with a ratio of
clauses to variables in a certain range [13]. Multiplexers, which are very numerous in the SAT-hard instance,
introduce clauses and variables to the SAT problem at this target ratio, increasing the runtime of the DPLL
algorithm. The advantage of such an approach to obfuscation is that it is not fundamentally limited in the amount
of error it can inject [42, 43]. Rather than hindering the SAT attack by reducing the number of inputs which
produce corrupted outputs, obfuscation methods such as Full-Lock use the structure of the SAT-hard instance to
lengthen SAT solve time. This makes the design SAT-resistant while still injecting suicient error to prevent
piracy.

2.4 InterLock

The authors of Full-Lock have since introduced InterLock [14], which improves Full-Lock by increasing the
complexity of the switch-boxes used in the SAT-hard instance. Recall that after possibly switching their two
inputs, Full-Lock switch-boxes have a second stage of multiplexers which give them the option to pass or invert
each signal. InterLock replaces the inverters with 2-input gates, such as AND, OR, XOR, etc. Each gate has
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logic function �� and 2 inputs: �� , the output of the irst multiplexer in the switch-box; and łextra input" ��� � , a
new input to the SAT-hard instance added by InterLock. The extra inputs pass from the original circuit to each
individual switch-box. The new gate moves part of the design functionality to the SAT-hard instance, which
prevents an attacker from simply removing the instance to restore the netlist to its state prior to obfuscation.
Figure 2 shows the new switch-box structure introduced by InterLock.

InterLock represents a more secure obfuscation technique than Full-Lock because the incorporation of 2-input
gates inside the switch-boxes means that circuit logic is łtwisted" into the SAT-hard instance. An attacker must not
only learn the permutation order of the SAT-hard instance, but also determine where the 2-input logic gates and
extra inputs should be applied to the signals passing through the SAT-hard instance. This makes InterLock more
resistant to structural removal attacks than Full-Lock, which can at most invert its inputs. InterLock retains the
SAT-resilient nature of its predecessor, so both SAT attack iteration time and output corruption for an incorrect
key are high.

3 Atacking Full-Lock byuerying the SAT-Hard Instance

In a design obfuscated with Full-Lock, there is in the worst case a single permutation of Full-Lock inputs which
is logically equivalent to the intended module functionality implemented by the black-box oracle [13]. With � !
total permutations, a brute force attack is unfeasible, so another approach is required. In this section, we show
how an attacker can learn the permutation implemented by an � -input SAT-hard instance with � + 1 queries of
the exposed inputs and outputs of the instance. While our attacker model does not allow the SAT-hard instance
to be queried directly, in subsequent sections we will develop a method to analyze the obfuscated netlist and
infer the relevant information from queries of the black-box oracle available to a SAT-capable attacker.
This will require two steps: 1) sensitization of the SAT-hard instance, covered in Sections 4 and 5, and 2)

inference of instance outputs, covered in Section 6. The irst is achieved through analysis of the SAT-hard
instance’s fanin cone in the obfuscated netlist, while the second is done through analysis of its fanout cone. We
then formalize an attack on Full-Lock in Section 7 which queries the oracle and makes inferences about the
instance functionality, producing a partial solution. We complete the solution by integrating our partial results
with a conventional SAT-style attack in Section 7.

3.1 Vector Definitions

Our attacks depend on observations of the primary inputs and outputs of the circuit as well as inferences about
the inputs and outputs of the SAT-hard instance. We deine vectors of the latter as the SAT-hard instance input
vector x and output vector y. These have the same length, which we label � , since the function of the SAT-hard
instance is to permute its inputs. We will refer to the primary input vector as I and the primary output vector as
O. The primary inputs and outputs are part of the design topology before obfuscation, so the lengths of I and O

can take any value. Figure 1(c) shows a high-level diagram of the SAT-hard instance and its fanin and fanout
cones, with all 4 of these vectors labeled.

3.2 Revealing Permutation by Stepping Full-Lock Inputs

We can devise a method to learn the functionality of the SAT-hard instance by dividing the problem into sub-
problems which can be solved individually. Since the functionality of the instance is to permute its inputs, to
solve the problem all at once, as with the SAT attack, the attacker would need to ind the correct permutation of
the inputs from � ! possibilities. However, the attacker can break this down by choosing one input and attempting
to ind which output it is permuted to, which has � possible solutions.

Theorem 3.1. Identifying the permutation destinations of input bits of the SAT-hard instance in Full-Lock reduces

the solution space exponentially.
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Table 1. List of symbols and their meanings.

Symbol Meaning

I Primary input vector

O Primary output vector

x Input vector of the SAT-hard instance

y Output vector of the SAT-hard instance

�� Bit � of x

� � Bit � of y, the permutation destination of ��
x�,1, x�,2 A pair of x values which difer only at ��
y�,1, y�,2 A pair of y values which difer only at � � , which is

the permutation destination of ��
I�,1, I�,2 The primary input values corresponding to x�,1, x�,2

O�,1,O�,2 The primary input values corresponding to y�,1, y�,2

Proof. The solution space of the functionality of the SAT-hard instance in Full-Lock is the number of possible
permutations of� inputs,� !. Learning the placement of 1 item in the permutation, i.e. the permutation destination
of 1 input bit, means that the number of remaining valid solutions is equal to the number of permutations of the
other � − 1 input bits, or (� − 1)!. Therefore, identifying the permutation destination of 1 input bit prunes the
solution space by a factor of � .
Similarly, identifying the permutation destination of a second bit prunes the solution space by a factor of

� − 1, a third by � − 2, and so on. Therefore, the solution space is reduced exponentially as more permutation
destinations are found. □

The exponential pruning of the solution space under Theorem 3.1 is suicient cause for an attacker to search for
permutation destinations of the SAT-hard instance. However, we can deepen our intuition about why permutation
destinations are so beneicial to solving the problem by considering the amount of work needed by the attacker
to solve the problem using permutation destinations, as compared to solving the Full-Lock functionality without
dividing it into sub-problems.
When searching for the permutation destination of the irst input bit of the SAT-hard instance, the attacker

must evaluate in the worst case � possible solutions, eventually determining the correct answer. After solving
the irst sub-problem, inding the permutation destination of the next input has only � − 1 possible solutions,
then � − 2, and so on, until each input’s destination has been found. By dividing the problem this way, the

number of possible solutions the attacker must consider over the course of the attack is
∑�

�=1 � − � , which is
quite low for an obfuscation problem. However, if the entire SAT-hard instance functionality is solved as a single

problem, the attacker must consider � ! =
∏�

�=1 � − � solutions, which is too many for a brute-force attack to be
feasible. Therefore, the ability to identify the permutation destination makes solving the problem polynomial
instead of exponential.

To determine the permutation destination of a SAT-hard instance input, it is helpful to express the outputs as
logical functions. For any SAT-hard instance output � � , there is some input �� such that � � = � (�� ). Since the
inversion is possible inside the routing network, � (�� ) may be �� or ¬�� .

Theorem 3.2. Let � � = � (�� ) with � (�� ) = �� or � (�� ) = ¬�� . Then for 2 values of x, x�,1 and x�,2, such that

��,1� = ¬��,2� and ��,1
�

= ��,2
�
, � ≠ � . Then the corresponding y values, y�,1 and y�,2 will satisfy �

�,1
� = �

�,2
� and �

�,1

�
= �

�,2

�
,

� ≠ � .
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(c) shows the correct permutation ater observing the example data from Table 1.

Proof. First, we note that each output is a function of only 1 input, and each input only propagates to 1
output, its permutation destination. Therefore, if the attacker makes 1 query of the SAT-hard instance to learn any
input-output pairing, then changes 1 input bit �� ∈ {�0, �1, . . . , ��−1}, and makes another query, the only output
bit to change will be the changed input’s permutation destination � � ∈ {�0, �1, . . . , ��−1}. Then the outputs y�,1

and y�,2 corresponding to x�,1 and x�,2 also have a Hamming distance of 1, and they satisfy �
�,2

�
= �

�,1

�
for � ≠ �

and �
�,2
� = ¬�

�,1
� for the permutation destination � � of �� . Therefore, � � can be determined by inspection from y�,1

and y�,2. □

Using Theorem 3.2, we describe how an attacker can eiciently unlock Full-Lock by querying the SAT-hard
instance � + 1 times. In the irst step of the attack, the attacker makes an initial query of the SAT-hard instance
to obtain the input-output pair x�,1, y�,1. The attacker will make a second query after changing 1 input bit, which

we label x�,2, y�,2. We represent the position of the changed input bit as � , so that ��,2� = ¬��,1� . For the attacker, the

initial choice of � is arbitrary; any bit in x�,1 could be lipped, and after querying the oracle, the attacker will ind
that y�,2 difers from y�,1 by 1 bit, and that � � is the permutation destination of the toggled input �� . As discussed
previously, knowledge of � � reduces the problem size by a factor of � , and it has been accomplished with only 2
SAT-hard instance queries.
After the attacker has learned the destination of 1 input, the remaining undetermined functionality of the

instance can be represented as a permutation of the remaining � − 1 inputs, since a permutation is a one-to-one
mapping from the inputs to the outputs and one of each has just been removed from the problem. Therefore, the
attacker chooses a new value of � and makes 2 more SAT-hard instance queries to learn a second permutation
destination, this time reducing the problem size by a factor of � − 1. After testing each bit of x, the attacker
has made 2� SAT-hard instance queries and learned the circuit’s total functionality. With this information, the
attacker can remove the SAT-hard instance from the netlist and route the input signals to the appropriate outputs,
producing an obfuscation-free netlist.
To reduce the number of queries, the attacker can repeat the same irst input x�,1 for each step, so that x0,1 =

x1,1 = · · · = x�−1,1, which we represent as x�� � with corresponding output y�� � . Then the other input/output
pairs x0,2/y�0,2, x1,2/y�1,2, · · · , x�−1,2/y�� −1,2 can be represented as simply x0/y0, x1/y1, · · · , x�−1/y�−1. Since
one bit’s mapping is now learned with each choice of x� , the attacker can learn the functionality of the SAT-hard
instance with � + 1 oracle queries.

ACM Trans. Des. Autom. Electron. Syst.
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Table 2. Sample I/O relationships showing how the functionality of a fully exposed SAT-hard instance can be learned in

linear time. If the instance has � permutation inputs, then the functionality is learned ater checking the oracle � + 1 times.

i x� y� � Learned
Mapping

�� � 0000 1101

0 0001 1111 1 �0 → �1
1 0010 0101 3 ¬�1 → �3
2 0100 1100 0 ¬�2 → �0
3 1000 1001 2 ¬�3 → �2

As an example, we examine the SAT-hard instance queries in Figure 3, which produce an initial input-output
pair x�� � = 0000, y�� � = 1101. The attacker then toggles bit 0 of x and inds the I/O pair x0 = 0001, y0 = 1111.
From these two data points, the attacker infers that �0, the lowest bit of x, is permuted to �1, the second lowest bit
of y. Then the attacker can use x�� � and add a new query for x1 = 0010. Finding y1 = 0101 reveals �1 is permuted
to ¬�3.

After iterating through each bit of x, the attacker has learned the permutation of all 4 input bits and therefore
knows the logical function of the SAT-hard instance. This allows the attacker to recreate the netlist of the circuit
before obfuscation, defeating the IP protection. Table 2 shows all of the I/O pairs the attacker inds and the
information learned from each one, while Figure 3 graphically shows the irst step of the process as well as the
mapping from x to y that the attacker constructs.

3.3 Extension to InterLock

InterLock can be attacked in a similar manner to Full-Lock, but the increased complexity of the SAT-hard instance
requires additional consideration [14]. Recall that a switch-box in InterLock contains 2-input logic gates with
input-symmetric logic function �� which may be applied to the signals being permuted by the SAT-hard instance.
This introduces 2 diiculties we must overcome to extend the method we have developed in Section 3.2 to
InterLock. First, the outputs of the SAT-hard instance added by InterLock are not always a permutation with
possible inversion of its inputs. Second, since each stage of the network could cause a signal to pass through a
gate, the attacker must learn which functions �� with extra inputs ��� � are applied to the intermediate signals.
To overcome diiculty 1, we make use of a theorem:

Theorem 3.3. There exists a vector of ��� values such that the output vector y of the SAT-hard instance inserted

by InterLock is a permutation with possible inversion of its input vector x.

Proof. The proof of the theorem is done by showing that each extra input has a value which causes the
corresponding switch-box output � � to be sensitized to �� , so that any change in �� will be relected by � � . Then,
if all extra inputs are set to sensitize their corresponding �� , we show that this results in the SAT-hard instance
producing an output which is a permutation with possible inversion of its input.

First, examine the InterLock switch-box diagram in Figure 2. In this diagram, the input-symmetric, non-constant
2-input logic functions �1 and �2 represent standard logic gates, such as AND, OR, etc. Since these gates are
included in the obfuscated netlist, they are known to the attacker, as are the values of the extra inputs, since
these signals come from outside the obfuscated portion of the circuit. To ensure that � � is sensitized to �� , the
attacker must use knowledge of the function �� to set the extra input ��� � to a value such that, while ��� � remains
constant, �� (�� , ��� � ) ≡ �� or �� (�� , ��� � ) ≡ ¬�� .

ACM Trans. Des. Autom. Electron. Syst.
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Lemma 3.4. For an input-symmetric, non-constant 2-input boolean function � (�,�), there exists a boolean value �

such that � (�,�) ≡ � or � (�,�) ≡ ¬�.

Proof. There are 6 input-symmetric 2-input boolean functions: AND, OR, XOR, NAND, NOR, and XNOR.
AND and NAND functions are inverted when the inputs both become 1, so for � = 1, an AND gate has � (1, �) ≡ �

and NAND has � (1, �) ≡≠ �. Similarly, for � = 0, an OR gate has � (0, �) ≡ � and NOR has � (0, �) ≡ ¬�. XOR and
XNOR gates are always sensitized to both inputs; if exactly 1 input changes, the gate output will always change.
We say that � is both 0 and 1. □

We refer to a vector p of ��� values which satisies Theorem 3.3 as a pass vector. Similarly, the boolean value �
which satisies Lemma 3.4 is the pass value of the logic function.

To ensure that � � is sensitized to �� , the attacker must use knowledge of the function �� to set the extra input
��� � to the correct pass value for the function �� . We will argue next that this collection of individual pass values
is also a pass vector of the SAT-hard instance.
The result of sensitization of � � to �� (and by extension, of � � to �� ) is that the extra input can be removed

from the attacker’s model of the circuit, and �1 and �2 can be represented by either a bufer or inverter. This
makes the output of each switch-box a permutation with possible inversion of its inputs, which is the same as
the switch-boxes in Full-Lock. Since the switching network structure is also the same as in Full-Lock, applying
this condition to each switch-box in the SAT-hard instance leads to the conclusion that the functionality of the
SAT-hard instance is a permutation with possible inversion, conirming the theorem. □

As described in the proof of the theorem, the attacker can learn each bit � � of p by simply inspecting the
obfuscated netlist to observe the corresponding gate function �� . As an example, if a switch-box has �1 =

��� (�� , ���1), then the attacker can set ���1 = 1, and then for �� = 0,�1 = 0, while for �� = 1,�1 = 1. Therefore,
the pass value of ���1 is 1.
With a pass vector applied to its extra inputs, the SAT-hard instance of InterLock becomes functionally

equivalent to one in Full-Lock. The input stepping method described in Section 3.2 can be used to learn the
permutation implemented by the SAT-hard instance.

This is very helpful to the attacker, but unlike in Full-Lock, it does not represent the total functionality of the
SAT-hard instance. Since functions are applied to InterLock signals within the SAT-hard instance, we must also
match each signal to the 2-input function applied to it (or bypassed) at each stage of the switching network. This
can be done by manipulating the inputs and observing changes in the output to determine which intermediate
signal passes through each gate and which gates are bypassed.

To most quickly learn which output signal has passed through each �� , the attacker uses Lemma 3.4 to check
whether either value of �� (which can be changed by changing the SAT-hard instance input �� ) causes an output
� � to be sensitized to an extra input ��� � . By the proof of the lemma, if no � � is sensitized to ��� � for either value
of �� , then the signal has not passed through a gate.
Assuming the input stepping attack has already been executed on a SAT-hard instance, the attacker begins

with the reference input and extra input pass value used for the input stepping attack, then toggles each extra
input one at a time. If an output bit � � changes in response to ��� � , then the attacker knows to apply �� to the
corresponding input signal when reconstructing the obfuscation-free netlist. After testing each extra input, the
SAT-hard instance input vector x is inverted and the process is repeated. Once all inputs have been applied to
each gate, any gates which did not produce an output response must be bypassed, since each bit of x would have
been set to its pass value in each 2-input function �� during one toggle of the corresponding ��� � , yet we did not
observe responses in the output to the changing ��� � . Therefore, by Lemma 3.4, �� could not have been applied to
any bit of x.
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Fig. 4. Miter circuit for finding a sensitizing primary input patern I�,1, I�,2 for a SAT-hard instance input . The inclusion of 1

XOR gate and � − 1 XNOR gates forces the condition that x�,1 has a Hamming distance of 1 from x�,2.

If output responses are observed, the attacker knows to apply �� to the corresponding input signal when
reconstructing the obfuscation-free netlist. If no change is observed at the output, there are 2 explanations: 1)
this ��� � is unused and the corresponding �� is bypassed, or 2) �� is not sensitized to ��� � at the current value
of �� . To distinguish between these, a second pass through ��� � is needed. The attacker irst inverts the value
of every instance input �� then again toggles each ��� � which didn’t afect any � � in the irst pass. If some ��� �
produces no change to the outputs this time, the attacker knows that this ��� � is not actually used, since every
combination of � ′

� and ��� � has been tried but the value of ��� � has not afected the output.

Once this process is complete, the attacker knows every �� and ��� � which must be applied to each instance
input, as well as which instance output the resulting signal is permuted to. Therefore, the attacker is able to
replace the SAT-hard instance in the obfuscated netlist with the intended functionality, unlocking the circuit. This
attack methodology requires in the worst case 4 oracle queries per switch-box. Since each stage of the network
has � /2 switch-boxes and there are approximately log2 (� ) stages in the network (depending on the network
topology), this increases the number of queries required for the attack from � + 1 for Full-Lock to approximately
(� + 1) + �

2 log(� ) for InterLock. While we see that InterLock is higher complexity, it can still be completed
with a polynomial number of SAT-hard instance queries, unlocking InterLock eiciently.

In subsequent sections, we will describe how a SAT-capable attacker can infer enough information about the
SAT-hard instance from a black-box oracle to use the methods described in this section to mount an efective
attack on Full-Lock even without direct access to the inputs and outputs of the SAT-hard instance. Although the
rest of this paper is focused on attacking a design obfuscated with Full-Lock, the methods we describe in Sections
4-8 apply equally to InterLock with the pass vector applied to the extra inputs.

4 Sensitization of the SAT-Hard Instance

Using the method in the previous section, an attacker with input and output access to the SAT-hard instance
in Full-Lock can learn the permutation destination of one input with a constant number of SAT-hard instance
queries, and the instance’s total functionality with a linear number of queries. However, our attacker model
assumes a black-box oracle, so the only information directly available to the attacker is the primary inputs and
outputs of the authenticated circuit. Generally, the SAT-hard instance is not placed at the input or output of
the circuit being obfuscated, so the SAT-hard instance inputs/outputs cannot be assumed to be the same as the
primary inputs/outputs.
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Applying our technique to the SAT-capable attacker model requires analysis of the obfuscated netlist to select
inputs for an oracle query which will apply inputs x�,1 and x�,2 to the SAT-hard instance. To do this, we partly
generalize the obfuscated circuit in the previous section by allowing a non-empty fanin cone for the SAT-hard
instance, so that I ≠ x, but still requiring the SAT-hard instance outputs to be the primary outputs (O = y),
meaning that the fanout cone is empty.
We deine a sensitizing input as a pair of primary input values I�,1, I�,2 which produce the SAT-hard instance

inputs x�,1, x�,2. We say that �� is the sensitized input. The outputs of the SAT-hard instance, and in this case
primary outputs, for the same inputs are y�,1, y�,2, where we say that � � is the sensitized output. As in the case
where the attacker is able to directly query the SAT-hard instance, � � is the permutation destination of instance
input �� . A successful attack in this case must ind a sensitizing input I�,1, I�,2 for every SAT-hard instance input
� ∈ [0, � − 1] and observe its permutation destination to determine the total functionality of the design.

Sensitizing inputs can be found eiciently by constructing a Boolean satisiability problem around the SAT-hard
instance fanin. To ind a sensitizing input for instance input �� , we create two copies of the logic between the
instance and the primary inputs with input vectors I�,1 and I�,2 and output vectors x�,1 and x�,2. We will add logic
to these to build a miter circuit. The values of I�,1, I�,2 are the solution to the problem, so these are not altered
and remain the inputs of the miter circuit. Logic added to the fanin cone outputs (i.e., SAT-hard instance inputs)

x�,1, x�,2 need to force them to meet the sensitization conditions ��,1� = ¬��,2� and ��,1
�

= ��,2
�
, � ≠ � . This can be done

by adding � logic gates�� = �� (�
�,1
�
, ��,2

�
), � ∈ [0, � −1], where �� is XOR and �� , � ≠ � is XNOR. An � -input AND

gate, with each�� as an input, requires all of the output conditions to be met in order to satisfy the single output
of the miter circuit. Since the miter, shown in Figure 4, is only satisied when the instance is sensitized at input
�� , any primary input values I�,1, I�,2 which satisfy the miter must be a sensitizing input. Once the attacker has
found I�,1 and I�,2, they can be applied to the black-box oracle to observe the outputs O�,1

= y�,1 and O�,2
= y�,2,

which reveal � � is the permutation destination of �� .
In an arbitrary circuit design, it is also possible that the miter circuit we have deined is found to be unsatisiable.

This means that there are no two possible output values which difer only at the desired bit. When this happens,
it is not possible to sensitize the SAT-hard instance for that bit, and the permutation destination cannot be
learned directly. When this occurs, this attack can only partially recover the functionality of the instance, but the
reduction in the search space is exponential with the number of SAT miters, allowing a secondary attack using a
conventional method to recover the missing functionality. Since the secondary attack solves an exponentially
smaller problem than the attacker initially faced, the execution time of our attack combined with a secondary
attack is still much smaller than an attack using the same method as the secondary attack from the beginning.

The eiciency of this part of the attack is determined by how quickly sensitizing inputs can be found. Satisfying
one miter allows the attacker to learn the correct destination of 1 SAT-hard instance input, each time reducing
the efective number of signals permuted by the obfuscation by 1 and pruning the functionality search space
exponentially. In the example from the previous section, illing in each row of Table 1 would require the attacker
to solve one SAT problem. Recovering the oracle’s total functionality requires solving � problems, one for each
SAT-hard input. This means the amount of time spent on each SAT problem is the primary factor in determining
whether the attack is feasible.

Importantly, the miter circuit does not include the SAT-hard instance itself, which is designed for attack
resilience. In fact, the security provided by Full-Lock depends fundamentally on an attacker using the SAT attack
being forced to include the SAT-hard instance in a SAT problem formulation, so our construction of a miter
circuit which does not fall prey to this trap bypasses the security guarantees of this logic obfuscation technique.
Furthermore, the duration of our novel sensitization attack depends only on the topology of the design before
obfuscation, which afects the attacker’s ability to ind inputs to sensitize speciic nodes in the circuit. Solving the
latter problem is an important step in IC testing, which has presumably been performed on the target obfuscated
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Fig. 5. Miter circuit for finding a sensitizing input for a SAT-hard instance input while reusing 1 previously generated PI

vector I∗, which would have been selected to sensitize a diferent bit of x.

design since it is in production. The attacker is therefore conident that sensitization problems using the netlist
are feasible, and may even have access to the same or similar commercial Automatic Test Pattern Generation
(ATPG) tools used to analyze the design for legitimate purposes. Foundry-based attackers, one potential identity
of a SAT-capable attacker, are particularly likely to have ready access to these tools. These ATPG tools are very
well developed, and are highly eicient for these problems [9, 17]. They have also seen use in other security
applications [8, 24, 25].

5 Reduction of Oracle ueries

The exclusion of the SAT-hard instance from SAT analysis and the attacker’s conidence in the feasibility of
the necessary SAT problems make our attack very eicient compared to conventional attacks, such as the SAT
attack, which are unaware of Full-Lock functionality, as these must include the SAT-hard instance in their SAT
formulations. However, the sensitization process as previously described requires 2� oracle queries, though the
input step process described in Section 3.2 requires only � + 1 queries of the SAT-hard instance. Therefore, we
seek to reduce the number of oracle queries in our sensitization attack to match the number required to complete
the analysis of the SAT-hard instance without any surrounding circuitry.
Comparing the two processes, we see that this diference in query counts comes from the reuse of an initial

łreference" input x�� � and output y�� � during the input stepping process, which are compared to each subsequent
SAT-hard instance query x� /y� . However, when searching for sensitizing inputs, the circuit-SAT solver returns
two PI patterns I�,1 and I�,2 for each bit � of x. To reduce the number of queries we make in our sensitization
attack, we would like to similarly add only a single oracle query for each bit � of x. However, for the sensitization
attack we cannot simply choose an arbitrary x�� � and toggle each bit one at a time because the circuit topology
may make some values of x impossible to achieve for any primary input vector.

Instead, we begin the sensitization process as usual to ind the irst 2 primary input values, I0,1 and I0,2, which
sensitize a single bit of x, but for subsequent bits of x we attempt to adapt the circuit-SAT problem of Figure 4 to
reuse primary input values already selected to sensitize other bits of x. So, for the 2nd bit of x, we seek to assign
I1,2 = I0,1 or I1,2 = I0,2.
The most direct way to implement this is shown in Figure 5, with an equality block enforcing the condition

that I�,2 = I∗, where I∗ could be any of the previously generated PI vectors. In practice, this equality block is
implemented with an � -input AND gate between all bits of I�,2 or their inversion, depending on the bit’s value in
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Fig. 6. Miter circuit which tests an observed output patern for sensitivity to a particular input bit. The inclusion of 1 XOR

gate and � − 1 XNOR gates forces the condition that y�,1 has a Hamming distance of 1 from y�,2.

I∗. This accounts for the value of I∗ while building the miter circuit and eliminates the need for an explicit I∗

signal in the circuit-SAT problem.
While the irst sensitization pair must still be generated in the original way, requiring 2 initial PIs, this new

circuit-SAT problem allows all subsequent sensitization patterns to be produced by adding only 1 new PI vector.
This method still nominally produces a pair of PI vectors to sensitize each of the � bits of x, but accomplishes
this with only � + 1 unique vectors, matching the number of oracle queries used in the original input stepping
attack in Section 3.2.

For an arbitrary circuit, there is no guarantee that a previously generated PI vector I∗ can be used to sensitize
the chosen bit �� , even if �� is sensitizable. If the circuit-SAT solver returns UNSAT using I∗, then the target bit ��
cannot be toggled for any value of I. The attacker must attempt to reuse another previously generated I� value,
and if no I� is successfully reused, the original circuit-SAT problem must be attempted to see if �� is sensitizable
at all. In this case, sensitizing �� requires adding two new PI values, and the attack will require more than the
theoretical minimum of � + 1 oracle queries.

In our experiments, we did not observe any benchmark circuits which required more than � + 1 oracle queries.
Additionally, although this version of the attack potentially requires multiple problems to be solved, the solver
efectively has fewer bits it needs to assign, making each problem signiicantly faster. Our experiment shows that
the overall attack time does not sufer and in fact improves using this alternate sensitization method.

6 Inferring SAT-Hard Instance Outputs

Now that we have established that an attacker can sensitize the SAT-hard instance inside a black-box oracle, we
move to show how information about the outputs of the instance can be inferred from the oracle. This problem is
more diicult than inding sensitizing inputs because in the latter, the attacker applies known inputs and can
precisely evaluate internal nodes in the fanin of the SAT-hard instance. However, when attempting to determine
which SAT-hard instance output has inverted from the change in the primary outputs seen in an oracle query,
there may be multiple fanout inputs (i.e., instance outputs) which could produce the same observed results. This
limits the attacker to examining each fanout input and determining which ones could have been the inverted
signal, rather than solving one problem and producing a deinite solution, as when inding a sensitizing input.
The attacker knows that after applying a sensitizing input to the oracle, one instance output � � has inverted

while all other outputs remain the same. While the value of � � is unknown, the attacker can build a list of
candidate outputs by testing each instance output �� ∈ {�0, �1, ..., ��−1} to determine whether its sensitization
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could have produced the primary output O�,1,O�,2 seen in the black-box oracle. Testing whether �� could be
the sensitized output � � requires the construction and solving of a miter circuit similar to the one used to ind
sensitizing inputs.

When inding a sensitizing input, the miter circuit is formed around 2 copies of the SAT-hard instance fanin. To
test whether �� could be the sensitized bit, the miter is constructed around copies of the SAT-hard instance fanout,
with y�,1 and y�,2 as their inputs and O�,1 and O�,2 as their outputs. Since the attacker is interested in whether any
values of y�,1, y�,2 are consistent with the oracle query output O�,1,O�,2, these are also the input to the overall

miter circuit. To enforce the condition that output �� is sensitized, i.e., �
�,1
�

= ¬��,2
�

and ��,1
�

= ��,2
�
, � ≠ � , we append

to the miter the logic gates �� = �� (�
�,1
�
, ��,2

�
), � ∈ [0, � − 1], where �� is XOR and �� , � ≠ � is XNOR. In addition,

the attacker requires the satisfying values of y�,1, y�,2 to produce the observed primary output O�,1,O�,2. This is
done by adding a 2� -input AND gate which takes as input every bit of O�,1,O�,2 or its inversion, depending on
that bit’s value in the oracle query. Finally, the output of this AND gate is passed into an � + 1-input AND along
with the outputs of each gate�� , which gives the miter output. The structure of this miter is shown in Figure 6.
If the miter is satisiable, then the SAT-hard instance output �� must be added to the list of candidates for � � .
We use this analysis repeatedly to prune the search space of the functionality of the SAT-hard instance. �

oracle queries, one which sensitizes each instance input, are needed, and each oracle query requires � SAT
problems to be solved, one for each instance output. This results in � 2 problems in total. The degree of pruning of
the search space depends on the number of permutation destinations the attacker can rule out for each sensitized
input. For a single sensitized input �� , i.e. for each oracle query, if the attacker determines that�� of the � outputs
could not be the permutation destination � � for �� , then the functionality search space is reduced by a factor of

�
�−��

. In the best case, the destination is determined exactly when all but 1 output is ruled out, so�� = � − 1

and the search space is reduced by a factor of � from � ! to � − 1!. This is the same reduction as was seen in
previous sections when an input’s destination was determined.
A secondary attack is necessary when multiple instance outputs could produce the oracle’s outputs when

sensitized. As in the previous section, the functionality of the SAT-hard instance has already been extensively
pruned, so executing both our sensitization attack and a secondary attack using the traditional SAT attack obtains
a total solution more quickly than an attack using only the SAT attack. Like the method for inding sensitizing
inputs described in Section 4, the eiciency of the output analysis is determined by the eiciency of the available
SAT solver. Our attack continues to exclude the SAT-hard instance from the SAT problem, giving it an advantage
over existing attacks such as the SAT attack.

7 Full-Lock Functionality Recovery by a SAT-Capable Atacker

Finally, let us consider our total attack surface.
Threat Model: A SAT-capable attacker has access to

(1) The primary inputs I and outputs O of a black-box oracle.
(2) An obfuscated netlist, including knowledge of which inputs are key inputs. Items 1 and 2 are standard in

the iterature.
(3) The number and location of SAT-hard instance inputs x and outputs y. This is revealed to the attacker by

the concentration of the key inputs in the SAT-hard instance and the regular structure of the switch-boxes.

Knowledge of x and y is necessary for the attacker to construct miter circuits for sensitivity analysis. In general,
there is logic between these vectors and the primary input and output vectors I and O of the SAT-hard instance,
so x ≠ I and y ≠ O.
With only access to the primary inputs and outputs of the black-box oracle, the attacker must be able to

sensitize the inputs of the SAT-hard instance and then infer its possible outputs. This can be done by combining
the prior two algorithms, discussed in Sections 4-6. First, the attacker analyzes the instance fanin with the miter
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in Figure 4 or Figure 5 to ind sensitizing primary inputs I�,1, I�,2 for each instance input �� ∈ {�0, �1, ..., ��−1}.
This can be performed exactly as described in Section 4, since the nonempty fanout cone of the SAT-hard instance
does not afect the topology or function of the fanin. The alternate method in Section 5 could also be used to
reduce the number of oracle queries made. In either case, the attacker queries the oracle for each sensitizing
input, but unlike in 4, this does not immediately reveal the permutation that the SAT-hard instance performs.
Instead, though the attacker knows the inputs x to the SAT-hard instance, its output y must be extrapolated

from the primary outputs O. This is identical to the scenario described in Section 6, so the same process can
be applied here. The attacker compares the oracle outputs O�,1,O�,2 to the instance fanout and prunes the
functionality search space by using the miter in Figure 6 to evaluate which instance outputs � ∈ {1, ..� } may
have been the stimulated output � .
This attack generally leaves the attacker with only a partial solution to the functionality of the SAT-hard

instance, so a secondary attack using an existing methodology is used to identify the exact functionality from the
greatly reduced search space. We repeat our earlier argument that even with the secondary attack, our attack
is more eicient than using the existing methodology from the beginning because our sensitization attack has
greatly reduced the size of the remaining problem. Our attack reduces the problem complexity more eiciently
than existing methodologies because it does not include the SAT-hard instance in a SAT formulation. This is
demonstrated in Section 11, where we show the results of our experiment attacking benchmark circuits.

8 Recovery of Complete Functionality Through a Secondary Atack

Our sensitization attack can be completed much faster than a traditional SAT attack, but generally produces only
a partial solution. This occurs for 2 reasons:

(1) Our attack sensitizes SAT-hard instance inputs by learning 2 primary input vectors I�,1, I�,2 which produce
2 instance inputs x�,1, x�,2 which difer by a Hamming distance of 1, placing the single difering bit in a
precise location. This is a heavily constrained problem, and there may be no solution to sensitize some
inputs. When this occurs, our attack will not be able to infer the destination of this input, since it cannot
observe its efects on the primary outputs without other inputs also changing.

(2) After observing two primary output vectors from the oracle, our algorithm must determine which of the
SAT-hard instance output bits could have produced the query results. However, multiple outputs could
be capable of this, so the attack is only able to determine a group of candidate outputs, any one of which
could be the permutation destination of the sensitized input.

As has been discussed in Sections 6 and 7, the partial solution produced by our methodology reduces the search
space by pruning the number of possible permutation destinations of each SAT-hard instance input. While this
does not fully unlock the circuit, these results represent an exponential reduction in the functionality search space.
To fully unlock the obfuscated circuit, we launch a second attack to recover the remaining functionality. This
secondary attack builds on the results of our functional attack and is able to solve the greatly reduced problem.
To set up the secondary attack, we take as output from our novel sensitization attack a matrix � of Boolean

values, with rows representing SAT-hard instance inputs and columns representing instance outputs. Matrix
element �� � is False if our attack concluded that � � could not be the permutation destination of �� and True
otherwise. We have developed a tool which uses this information to replace the SAT-hard instance in the
obfuscated netlist with � multiplexers, each with an output that replaces an output of the removed SAT-hard
instance. A newly added key-driven select signal allows the multiplexer to pass one of the � signals which were
previously the SAT-hard instance inputs which our attack did not eliminate as possible sources of that output.
The SAT-hard instance was also capable of inverting its inputs, so a 2-input multiplexer is added after each
� -input multiplexer which uses another key-driven select signal to choose between the selected instance input
and its inversion. Since the SAT-hard instance has been removed, the key-driven select signals are the only key
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bits remaining in the netlist. The multiplexers are capable of reproducing any functionality in the search space
that the original obfuscated netlist was capable of, so this operation preserves the functionality of the design as a
whole. The edited netlist is similar to the relaxed models of the SAT-hard instance described in [31], but in our
secondary attack, all inputs cannot reach all outputs.
The secondary attack can be launched using this modiied netlist and the existing black-box oracle. The key

value the attack inds tells the attacker the correct routing of signals from the SAT-hard instance input to its
output. With this information, the attacker infers the correct functionality of the obfuscated netlist, bypassing
the security guarantees of Full-Lock.

9 Netlist Modification to Remove Obfuscation

After the completion of the secondary attack, the attacker has completely learned the correct functionality of the
obfuscated netlist. The simplest way to produce a functional obfuscation-free netlist from the attack results is to
remove the logic for the SAT-hard instance from the design iles and add wires from each of its input nodes to
the corresponding output node, possibly with an inverter. This netlist modiication introduces correct logic to the
design with no key inputs, but reduces the delay of the signals passing through, which could result in timing
violations in a tightly constrained netlist. To mitigate this, the opened up space in the layout which previously
hosted the SAT-hard instance can be used to insert delay elements, causing the modiied netlist’s timing to more
closely resemble that of the original obfuscated netlist. Both the netlist editing and timing evaluation can be done
with any tools compatible with the IC technology; no special knowledge of the tools used in the original circuit
design is required.

10 Countermeasures

As discussed in Section 3.3, InterLock does not provide additional security against our attack compared to
Full-Lock. Since each logic gate inside InterLock has only 1 input which is obfuscated, the attacker can assign
the other input so that the gate output is the same as the obfuscated signal. Once the embedded gates are made
"transparent," the attacker can proceed as if attacking Full-Lock.
Sweeney et al. [31] propose a defense which is very similar to InterLock, but in their version, the logic gates

embedded in the switch-boxes take both inputs from the MUXes. The SAT-hard instance in LoPher [23] has the
same functionality, but both the permutations and the logic functions are implemented with a cryptographic
block cipher. In both techniques, there are no extra inputs to the switch-boxes. This has several implications:

• Without direct access to any gate inputs, the attacker cannot make the gates transparent.
• The attacker can no longer assume a 1-to-1 mapping from inputs to outputs, since each gate sinks multiple
switch-box inputs and produces only 1 output.

• The value of each SAT-hard instance output depends on more than 1 of its inputs.
• The sensitivity of the SAT-hard instance to its inputs is unknown. There is no guarantee that toggling any
1 input will result in an output response.

The interaction between signals traveling through the routing block makes the sensitization attack insuicient to
determine the functionality, as the problem the attacker must solve changes from a 1-to-1 mapping to a circuit
with unknown number and type of gates. As a result, these obfuscation methods are secure from our sensitization
attack. All future switching-based obfuscation techniques will need to include functions of multiple obfuscated
inputs to be considered secure.
Further research into circuit sensitization could produce attacks able to break these techniques. While basic

input-stepping is insuicient to learn the functionality of a SAT-hard instance with arbitrary logic, other input
patterns may produce enough information for an attacker to manufacture counterfeit chips.
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Other types of attacks may also be able to target this kind of obfuscation. The routing network in Full-Lock
is designed to resist the SAT attack, but the repeated switch-box structure may make Full-Lock vulnerable to
ML-based attacks such as GNNUnlock+ [1, 2]. This attack uses neural networks to classify nodes in an obfuscated
netlist as being part of the original circuit or being part of the locking logic.

11 Results

In this section we discuss the implementation of our attack and present data gathered from testing it against
benchmark circuits locked using Full-Lock. We provide runtime data to demonstrate the feasibility of the attack
against benchmarks obfuscated with large SAT-hard instances.

11.1 Experimental Setup

Our experiments begin with our benchmark circuits in gate-level Verilog iles. We select arbitrary internal signals
for obfuscation with Full-Lock and generate the SAT-hard instance with a Python script. The resulting obfuscated
Verilog ile is saved in the Berkeley logic interchange format (BLIF) for maximum compatibility with ABC. The
original benchmark ile is also converted to BLIF for use as a black-box oracle. During each step, we keep the
benchmark circuits as close to the original as possible, preserving their logical structure. This keeps our results
consistent regardless of which tools are used to prepare the netlists. Our attack is also technology-independent,
since it is purely logical.

Our sensitization attack code extends the ABC synthesis tool [6]. The tool extracts the SAT-hard instance fanin
cone from the obfuscated netlist, constructs the miter circuits in Figures 4 and 5, and uses ABC’s SAT solver to
ind sensitizing inputs. Our tool is capable of inding sensitizing inputs using either the method described in
Section 4 or the alternate method of Section 5, the latter using fewer oracle queries.

Once the sensitizing inputs are selected, the tool queries the black-box oracle to ind the corresponding outputs.
With these it forms the miter in Figure 6 and infers a partial solution of the SAT-hard instance functionality.

A Python script modiies the obfuscated netlist to account for the reduced search space as described in Section
8, and then the lazy-sat tool [30] was used to ind the total solution.

Our control data was generated using the lazy-sat tool on the irst set of obfuscated benchmarks.
We tested our attack on benchmarks from a variety of application areas, selecting 5 benchmarks from the ISCAS

’85 suite [12], 1 benchmark from MCNC20 [36], and 5 benchmarks from ITC-99. Each benchmark is obfuscated
with Full-Lock using 3 or 4 diferently sized SAT-hard instances. All benchmarks included logic between the
SAT-hard instance and both the primary inputs and outputs, so a successful attack in our experiment required
both input sensitization and inference of SAT-hard instance outputs. This is the most general form of our attack,
which can be launched by any SAT-capable attacker.

We performed 2 experiments to demonstrate our attack: 1) We tested our sensitization attack and secondary
SAT attack as a compound attack on our benchmark circuits obfuscated with Full-Lock and compared the
compound attack duration to that of the traditional SAT attack; and 2) We tested our primary attack using 2
diferent sensitization methods, described in Sections 4 and 5 and compared the time required in each case to
complete the primary attack, which includes generating the sensitizing inputs and analyzing the primary outputs
for input-output relationships.

11.2 Sensitization Atack

We tested our novel sensitization attack against 11 benchmark circuits, irst measuring the runtime of the
sensitization attack, which produced a partial solution, and then the runtime of the secondary attack which
extracts the remaining functionality. Each benchmark was obfuscated with each of 3 SAT-hard instance sizes
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Table 3. Sensitization atack and SAT atack durations for various key sizes. Both atacks resulted in a timeout if the circuit

was not unlocked ater 48 hrs (≈170,000 s). All times are in seconds.

Circuit Key Sensitization Secondary Total SAT
Size Attack Attack Runtime Attack

Runtime Runtime Runtime

c1908 48 0.55 0.21 0.77 0.84
144 3.37 0.53 3.90 22.71
384 14.01 12.91 26.93 timeout

c2670 48 1.58 0.18 1.76 0.48
144 7.87 0.71 8.59 4.31
384 68.83 8458.36 8527.19 8708.47

c3540 48 2.46 0.61 3.07 0.56
144 11.02 2.92 13.94 59.24
384 48.74 13.16 61.90 timeout
960 438.07 288.03 726.10 timeout

c5315 48 3.44 0.45 3.89 0.49
144 15.49 1.49 16.98 15.46
384 88.83 9.12 97.94 955.38
960 598.32 109.01 707.32 timeout

c7552 48 4.68 2.16 6.84 5.01
144 22.00 5.17 27.18 17.85
384 112.62 117.10 229.72 timeout
960 702.99 timeout timeout timeout

des 48 4.74 0.65 5.38 1.02
144 20.35 1.67 22.02 10.52
384 99.89 11.53 111.42 1733.37
960 619.47 53.63 673.10 timeout

b14 48 7.10 2.39 9.49 2.14
144 30.12 6.53 36.65 16.77
384 141.99 42.01 184.00 768.14
960 817.04 291.54 1108.58 timeout

b15 48 11.67 2.07 13.74 2.04
144 48.75 2.44 51.19 10.95
384 228.81 11.64 240.45 1752.04
960 1178.61 113.36 1291.97 timeout

b17 48 55.52 5.47 60.99 5.70
144 207.54 18.00 225.54 33.19
384 848.97 35.90 884.87 965.29
960 1631.56 271.73 1903.29 timeout

b18 48 129.43 80.65 210.08 37.92
144 508.98 68.95 577.93 73.51
384 1987.38 221.13 2208.51 1071.78
960 8236.74 1018.86 24517.75 timeout

b19 48 342.45 1883.71 2226.16 1600.44
144 1356.16 1006.17 2362.33 1473.56
384 5181.09 1679.80 6860.89 5222.07
960 23498.89 3221.14 26720.03 timeout

with key sizes of 48, 144, and 384 bits. For the 8 larger benchmark circuits, we also tested with 960 bits. In this
experiment, we used the sensitization method described in Section 4.
Table 3 shows our results for each benchmark circuit and SAT-hard instance size, as well as the SAT attack

runtime data for comparison. For instances with 144 or fewer key bits, the SAT attack is often faster than the
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proposed attack. This is especially true of the larger benchmarks. However, at these sizes the attack is still very
quick. Except for the largest 3 benchmarks, our attack completes in within 1 minute for 144 or fewer key bits,
which is very small compared to the length of the 48 hr timeout window. Furthermore, our sensitization attack
clearly accelerates the secondary SAT attack compared to the standard SAT attack.
At larger sizes of the SAT-hard instance, the sensitization attack becomes much more eicient than the SAT

attack. Our sensitization attack unlocked every benchmark with 384 key bits and 8 of the 9 benchmark circuits
with 960 key bits, the largest size tested. In contrast, 3 of the 11 benchmark circuits with 384 key bits could not be
unlocked by the SAT attack within the test window of 48 hours. The SAT attack did not unlock any benchmarks
with 960 key bits.

These experimental results show that our novel sensitization attack is able to quickly unlock designs obfuscated
with Full-Lock even with sizable SAT-hard instances, which are not eiciently unlockable with traditional attack
methods. Our results remain consistent across several circuit topologies with only one outlier benchmark.

11.3 Reduction of Oracle uery Count

We also tested our alternate sensitization method described in Section 5, which reuses oracle queries and so
makes fewer of them than the method described in Section 4. To compare these methods, we executed the primary
sensitization attack using the method described in Section 5 on the ISCAS’89 and MCNC20 benchmarks used in
the previous experiment: 6 benchmarks with 48, 144, and 384 key bits and 4 benchmarks with 960 key bits. We
compare the sensitization attack data from the previous experiment to the duration of these new tests.
Table 4 shows our sensitization attack time with and without PI reuse. We see that reusing oracle queries

reduces both the number of oracle queries and the time required to execute our attack. Our tool was able to
sensitize the SAT-hard instance using the theoretical minimum number of oracle queries for each benchmark
circuit, so in key sizes we see that the percent reduction in oracle queries approaches 50% as 2� oracle queries

are cut to only � + 1. For benchmarks where oracle query reduction is not equal to 2�−(�+1)
2�

, this is the result of
some bits of x not being sensitizable. No oracle queries are made for these bits in either version of the attack, so
the percent reduction in oracle queries appears lower than the value of � would suggest.
The attack using fewer oracle queries is also 51.9% faster on average, and executes as much as 74.6% faster

than the other method. This speedup occurs because large sections of the circuit-SAT problem in Figure 5 are
simpliied out when the value of I�,2 is ixed to an externally assigned value I∗. Since I�,2 cannot change, the
copy of the SAT-hard instance fanin that has I�,2 as its input has ixed output, and the solver does not need to
evaluate this logic for every solution it considers. As a result, the problem size is cut nearly in half compared to
the baseline problem in Figure 4, since the solver only needs to consider parts of the problem which are reachable
by by I�,1, such as the copy of the fanin cone with I�,1 as its input.

12 Conclusion

In this paper, we introduced a novel sensitization attack to recover the intended functionality of designs obfuscated
with Full-Lock and InterLock, which are resilient against attacks by existing methodologies such as the SAT attack.
Our novel attack infers the input-output relationship of the SAT-hard instance that Full-Lock and InterLock
introduce to the circuit and eiciently unlocks the design.

The result is an increase in time eiciency compared to the traditional SAT attack because the attacker avoids
including the SAT-hard instance in the formulation of its Boolean satisiability problems. The SAT problems
the attacker solves are also similar to those used in IC testing, enabling the use of highly optimized algorithms
available to design houses and foundry-based attackers. Our experimental data demonstrates the viability of the
attack, which breaks nearly every circuit even at our largest key size. Most circuits were unlocked in 20 minutes
or less by our novel sensitization attack, even though none were unlocked by the traditional SAT attack. This
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Table 4. Our method to reduce the number of oracle queries drops the query count from 2� to as low as � + 1. In our

benchmark trials, this minimum bound of queries was achieved for all circuits, with the perecentage reduction in oracle

queries approaching 50% as the SAT-hard instance size increases. This method also completes the primary atack faster than

the original sensitization algorithm.

Circuit Key � Independent Query Time Query
Size Sensitization Reuse Reduction Reduction

Time Time (%) (%)

c1908 48 8 0.55 0.37 33.9 43.8
144 16 3.37 1.89 43.8 46.4
384 32 14.01 9.10 35.1 46.4

c2670 48 8 1.58 0.80 49.4 43.8
144 16 7.87 4.23 45.9 46.9
384 32 68.83 30.91 55.1 48.4

c3540 48 8 2.46 0.63 74.6 43.8
144 16 11.02 3.39 69.2 46.9
384 32 48.72 24.78 49.2 48.4
960 64 438.07 281.24 35.8 49.2

c5315 48 8 3.44 1.23 64.1 43.8
144 16 15.49 6.26 59.6 46.9
384 32 88.83 38.50 56.7 48.4
960 64 598.32 352.72 41.0 49.2

c7552 48 8 4.68 1.72 63.3 43.8
144 16 22.00 8.36 62.0 46.9
384 32 112.62 51.66 54.1 48.4
960 64 702.99 382.78 45.6 49.2

des 48 8 4.74 1.84 61.1 43.8
144 16 20.35 8.42 58.6 46.9
384 32 99.89 50.45 49.5 48.4
960 64 619.47 410.63 33.7 49.2

Average 51.9

speedup is achieved with a number of oracle queries one larger than the input size of the SAT-hard instance
added by Full-Lock obfuscation.
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