
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

Security-Aware Resource Binding to Enhance Logic
Obfuscation

Michael Zuzak, Member, IEEE, Yuntao Liu, Member, IEEE, and Ankur Srivastava, Fellow, IEEE

Abstract—Logic obfuscation mitigates the unauthorized use
of design IP by untrusted partners during IC fabrication. To
do so, these techniques produce gate-level errors that derail
typical applications run on the IC. Recent research has derived a
link between the error rate and the Boolean satisfiability (SAT)
attack resilience of logic obfuscation. As a result, it has been
shown to be difficult for obfuscation to inject sufficient gate-
level error to derail application-level function while maintaining
resilience to SAT-style attacks. In this work, we explore use of
architectural knowledge during the resource binding phase of
high-level synthesis to automate the design of locked architectures
capable of high corruption and SAT resilience simultaneously.
To do so, we bifurcate logic obfuscation schemes into two
families based on their error profile: distributed error locking
and critical minterm locking. We then develop security-focused
binding/locking algorithms for each locking family and use them
to bind/lock 11 MediaBench benchmarks. For distributed error
locking, our proposed security-aware binding algorithms de-
signed locked circuits capable of corrupting a typical application
for 52% more wrong keys than a circuit bound with conventional
algorithms. For critical minterm locking, our proposed security-
aware binding algorithms designed locked circuits capable of
corrupting a typical application for 100% of wrong keys while
also exhibiting 26x more application errors than a circuit bound
with conventional algorithms. Regardless of locking family, our
security-aware algorithms improved corruption without degrad-
ing SAT resilience or incurring sizable design overheads to do
so. Obfuscation applied post-binding could not achieve high cor-
ruption and SAT resilience simultaneously in these benchmarks.

Index Terms—Logic Locking, Logic Obfuscation, Untrusted
Foundry, High-Level Synthesis, Resource Binding

I. INTRODUCTION

The cost and complexity of cutting-edge integrated circuit
(IC) fabrication has skyrocketed with shrinking technology
nodes. This has driven IC design companies to adopt a fabless
business model, whereby untrusted third-parties are used for
IC fabrication. During fabrication, fabless designers must pro-
vide these untrusted facilities with a full layout for the design.
This layout contains critical design details, driving security
and privacy concerns including piracy and overproduction [1].

Logic locking (also called logic obfuscation) was proposed
to address security concerns during untrusted fabrication by
rendering the functionality of a design dependent on a secret
locking key [2]–[4]. Whenever an incorrect locking key is
applied to a design, there exists a deterministic set of input
patterns which produce incorrect output, thereby injecting

This work was supported by the National Science Foundation under grants
1953285 and 2245573.

M. Zuzak is with the Department of Computer Engineering at Rochester
Institute of Technology, Rochester, NY, USA. Email: mjzeec@rit.edu

Y. Liu and A. Srivastava are with the Department of Electrical and
Computer Engineering at University of Maryland, College Park, MD, USA.

error in the design. These inputs are called locked inputs.
By withholding the correct locking key from any untrusted
fabrication partners, an IC designer can prevent unauthorized
use of the design. Fundamentally, the goal of logic locking
is to inject sufficient error for any wrong key to derail any
unauthorized use of the design IP.

In response to logic locking, a Boolean satisfiability (SAT)
attack was developed [5], [6]. This attack has proved be
be quite potent. In fact, recent work has shown that logic
obfuscation is often unable to induce enough error to critically
impact an IC while maintaining resilience to SAT-style attacks
[7], [8]. This challenge stems from a trade-off underlying
combinational logic locking, regardless of construction, be-
tween the number of locked inputs per wrong key and SAT
attack resilience [9]–[11]. This trade-off requires that locking
protect only a small number of locked inputs per wrong key
to be SAT resilient. However, because the input space of
most modules is only partially utilized, the probability that
an arbitrary locked input will be applied to a locked module
during normal operation has been shown to be quite low in
practice [8]. If no locked inputs are ever applied, logic locking
provides no protection against the unauthorized use of design
IP, mitigating any security guarantees. This creates a dilemma.
High SAT resilience requires few locked inputs, however, we
must guarantee application corruption for wrong keys using
this small set of locked inputs. To overcome this dilemma, we
must consider the architecture of an IC.

This leads to the key theme of the work: using the archi-
tectural plasticity and context available during the resource
binding phase of high-level synthesis (HLS) to enhance logic
locking and secure an IC, as a whole, against an untrusted
foundry. As we show, security-aware binding can enhance the
security of pre-specified logic locking configurations, enabling
both corruption and SAT resilience to be achieved.

A. Related Work

Many prior works have explored obfuscation in the context
of HLS or higher-level design processes [12]–[20]. These
works can be broadly divided into two research thrusts.
The first thrust we characterize by its reliance on restricted
scan-chain access, such as TAO [17], ASSURE [15], and
others [12]. These works propose methodologies to obfuscate
a design during HLS. However, they assume a restrictive
attacker model where the adversary cannot access a working
chip with scan-chain access. This more restrictive attacker
model prevents the use of SAT-style attacks [5], [6], which
would otherwise unlock the high-error locking used by these
schemes [21]. As a result, these techniques are more limited

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 2

in utility than alternatives that promise security against an
oracle-equipped attacker [13], [14], [18], [19]. The work in
[16] considers how a scan-chain could be locked down during
normal chip operation to restrict oracle access, but this requires
the chip to be tested using incorrect dummy keys. Hence, the
chip is never validated with its intended function.

The second research thrust we characterize by its use of
as-is high-level synthesis algorithms, such as HLock [14],
SFLL-HLS [18], DECOY [19], and others [13]. While these
techniques utilize HLS in their design process, they do not
tailor HLS algorithms towards security-centered design goals.
For example, the work in [13], [14], [18] proposes algorithms
to budget and configure logic locking prior to or during
HLS. While these approaches occur alongside HLS, they do
not directly integrate with HLS algorithms to inform either
the design’s RTL or the configuration of logic locking to
improve security. Rather, this research supports the criticality
of architectural context to the security of logic obfuscation.
DECOY explores tighter integration with HLS, however, it
still does not integrate into any phase/algorithm of HLS [19].
Instead, DECOY adds a design optimization during HLS to
identify critical and non-critical IP. Critical IP is redacted
and implemented in an eFPGA for protection. Non-critical
IP remains in the ASIC. Thus, DECOY relies on the strong
security protections of the eFPGA to protect the critical IP.
While this yields security, eFPGA redaction introduces sizable
complexity and overhead. Such an approach is often untenable.

This leads us to the two primary distinctions between
this work and prior art. First, while the work in [12]–[19]
recognizes the importance of high-level context during HLS
and other high-level design processes, it fails to capitalize
on the architectural decisions made during these processes
to enhance security. Instead, conventional HLS algorithms
optimizing for goals such as switching activity [22] or register
re-use [23] are used as is. This is a missed opportunity.
HLS algorithms can be designed to make RT-level design
decisions that optimize/inform supply-chain security instead,
as shown in this work. Second, these prior works propose end-
to-end locking solutions that implement locking techniques in
a design during HLS [12]–[19]. The security-aware binding
approaches explored in this work do not configure or specify
a locking mechanism in a design. Instead, our proposed
algorithms provide the designer of the system the flexibility
to select the locking technique they wish to use based on their
application, security, and overhead goals and then configure
these schemes based on what modules contain high-value IP.
As a result, this work considers a more general problem (i.e.,
where the designer can choose the locking scheme that best
fits their goals) with a different objective (i.e., optimizing the
architecture around a fixed locking configuration).

B. Contributions

We propose security-aware resource binding to enhance
logic locking. To do so, we bifurcate logic locking into 2
families with distinct security goals during HLS, called Dis-
tributed Error Locking and Critical Minterm Locking. We then
propose 2 problem formulations, one for each locking family,

and formalize security-aware resource binding algorithms to
provably maximize the efficacy of locking. Note that all
combinational logic locking techniques can be placed in one
of these locking families, hence, by formalizing security-aware
resource binding for each family, we formalize security-aware
resource binding for combinational logic locking as a whole.
Our contributions for each locking family are:
Distributed Error Locking:

1) A cost function to guide resource binding that maximizes
the number of wrong keys that produce application errors
for a specified locking configuration.

2) A binding algorithm based on graph theory that maps
operations to locked modules to maximize the number of
wrong keys resulting in application corruption. An opti-
mal algorithm as well as a P-time heuristic is developed.

Critical Minterm Locking:
1) Critical minterm locking is a special case of distributed

error locking that allows broader design goals to be
pursued. To utilize this expanded scope, we define a novel
cost function that binds a circuit to 1) ensure all wrong
keys produce application error and 2) maximize this error.

2) A graph-theoretic binding algorithm that optimally maps
operations to locked resources to provably maximize
security through our derived cost function in P-time.

To evaluate our security-aware binding algorithms, we ap-
plied them to 11 MediaBench benchmarks [24]. For distributed
error locking, our security-aware binding algorithms produced
locked circuits that corrupted a characteristic application for
52% more wrong keys than the same circuit bound with
conventional binding algorithms. For critical minterm lock-
ing, our security-aware binding algorithms produced locked
circuits that corrupted a characteristic application for 100% of
wrong keys. Moreover, these locking configurations exhibited
26x more application errors than the same circuit bound with
conventional binding algorithms. For each binding/locking
solution, SAT resilience was maintained and minimal overhead
was incurred compared to conventional binding schemes.
Locking applied post-binding could not achieve both appli-
cation corruption and SAT resilience. In this way, combina-
tional locking, regardless of construction, can be enhanced via
security-aware resource binding during HLS.

II. PRELIMINARIES

A. Logic Locking

There are two primary security metrics for logic locking: 1)
corruption and 2) attack resilience. Corruption is the ability
to cause failures for wrong keys. This can be quantified by
the number of locked inputs (i.e., error-causing inputs). Attack
resilience is the ability to resist attempts to bypass obfuscation.
This can be quantified by the complexity of specific attack
strategies. For a prevalent attack against logic locking, known
as the SAT attack [5], [6], a relationship between corruption
and attack resilience (i.e., SAT query count) has been identified
[9]–[11]. While the exact nature of this relationship is currently
unknown [11], there have been upper-bounds derived [10],
[11] as well as probabilistic explorations [9].

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 3

These results show that for a fixed circuit and locking
configuration, there is some trade-off between the number
of locked inputs (corruptibility) and the SAT query count to
unlock a circuit. Because the SAT attack assumes access to
an IC’s scan-chain (i.e., its intermediate registers), SAT attack
resilience is calculated independently on a per-module basis.
Based on this relationship, research has shown that obfuscation
often cannot lock enough inputs to reliably derail unauthorized
use while maintaining SAT resilience [7], [8]. Thus, locking
is stuck in a dilemma between security goals.

A number of combinational logic locking schemes have
been proposed. While these schemes vary in construction,
they all achieve security by causing output corruption for
a set of inputs determined by the wrong key. We refer to
these output-corruption-inducing inputs as locked inputs. We
refer to the relationship between the set of locked inputs and
the wrong key as the error profile of a locking scheme. In
this work, we differentiate combinational locking schemes by
the presence of critical minterms, namely inputs that produce
output corruption for a large subset of wrong keys. We denote
locking techniques that lack critical minterms as distributed
error locking. This includes CAS-Lock [25], Lopher [26],
InterLock [27], and others [28]–[33]. Conversely, we de-
note locking techniques that use critical minterms as critical
minterm locking. This includes Stripped Functionality Logic
Locking (SFLL) [34]–[36] and Strong Anti-SAT [37]. These
two families form a tautology, ensuring that all combinational
locking can be characterized in this way. We note that this cat-
egorization of logic locking differs from the commonly-used
low/high-error classification categories. However, we classify
techniques in this way because it enables the derivation of a
provably-optimal, P-time solution to the security-aware biding
problem for critical minterm locking techniques (Sec. V), a
significant contribution of the work.

B. Approximate Attacks on Logic Locking

Approximate SAT attacks were developed to exploit the fact
that only a small set of inputs can be locked by SAT resilient
locking [38]–[40]. These attacks define early termination con-
ditions for SAT attacks that aim to locate a key that is good
enough to use a locked IP. Ideally, a key returned by such an
attack would produce output corruption only for inputs that
are never/rarely used, ensuring that locking-induced-corruption
does not occur during normal operation. Doing so bypasses
the security of logic locking. To resist approximate attacks, a
designer must ensure that locking injects error during normal
operation for the overwhelming majority of wrong keys.

C. High-Level Synthesis (HLS)

HLS transforms a behavioral description of functionality,
such as a high-level language, into an RT-level design. There
are generally 3 design optimizations during HLS: resource
allocation, scheduling, and resource binding. Resource allo-
cation determines the quantity and type of hardware resources
available to implement the design. Upon termination, a set
of allocated functional units (FUs) (e.g., multipliers, dividers,
etc.) is produced. Scheduling imposes clock-cycle boundaries

on the target behavioral code to resolve data dependencies.
This produces a scheduled data flow graph (DFG), whereby
vertices are operations and edges are dependencies between
operations. Binding maps (“binds”) operations to allocated
FUs. Common binding schemes aim to 1) minimize area (i.e.,
registers/muxes) [23] and 2) minimize switching power [22],
[41]. During binding, the expected input space for a circuit
is generally known [22], [41]. This enables switching power
estimation to inform power-aware binding decisions.

D. Considered Logic Locking Techniques

This work considers how an architecture can be built
around a designer-specified locking configuration. As such,
our algorithms are intentionally technique-agnostic, requiring
no specific locking mechanism to be used or modules to be
locked. This has two advantages. 1) It allows us to rely on
the strength of existing locking techniques, each with their
own use-case, and instead focus on how to optimally bind
the system around these techniques to improve security. 2) It
allows the designer to select the locking technique from the
literature based on their application, security, and overhead
goals and then configure these techniques in their design based
on what modules contain IP they wish to protect. Hence,
a designer can lock their system to reflect their unique
security goals while using our resource binding algorithms.

E. Attacker Model

Each proposed logic locking technique claims security
under its own attacker model. In some cases, the attacker’s
capabilities differ substantially (e.g., with/without scan-chain
access). Because the security-aware binding algorithms pro-
posed in this work are generic to the locking mechanism used
(see Sec. II-D), we inherit the attacker model of the selected
locking scheme. We assume that the designer-chosen locking
technique is implemented per the author’s specifications in
designer-specified locked modules to defend against their own
attacker model. We then focus on the resource binding for each
locked module, rather than locking these modules, to enhance
security. Stated formally, we target the attacker model of
the locking scheme chosen by the designer.

The way logic locking is configured within a system (e.g.,
what modules are locked) has a substantial impact on security.
In particular, removal [42], structural reverse engineering [43],
and de-synthesis [44] attacks are particularly relevant. These
attacks perform structural/logical analysis that allow a netlist-
equipped adversary to identify locking logic and then either
remove it or infer the correct key. Given the architectural scope
of the security-aware resource binding techniques we propose,
it is vital that the designer carefully consider the resilience of
their locking configuration to these attacks by avoiding locking
easily reverse-engineered or identifiable modules in the IC.

III. MOTIVATION FOR SECURITY-AWARE BINDING

Based on the prior work outlined in Sec. I-A, there is a need
to think beyond the locked module when obfuscating an IC.
If we follow conventional wisdom and consider only module-
level context while locking, we necessarily fall into a trade-off

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 4

between corruption and SAT resilience. Both design goals are
necessary for security. Therefore, in this work, we explore how
“smart” security-aware binding decisions can be harnessed to
enhance logic locking and achieve both competing goals.

We begin by formalizing the security ramifications of re-
source binding decisions. The foundation of this relationship
stems from the fact that resource binding selects the operations
executed on locked functional units (FUs), thereby determin-
ing the input minterms (i.e., values) typically processed on
locked FUs. Because locking corrupts output for only specific
locked inputs for a given wrong key, binding decisions greatly
impact security. We demonstrate this below.

A. Motivational Example: Overview

In order to explore the security impact of binding decisions
on logic locking, let us consider the scheduled DFG in Fig.
1A. This DFG is created from the behavioral description
provided as input to HLS, usually as a high-level programming
language. Vertices in the graph are operations. Edges are data
dependencies between operations. The DFG in Fig. 1A is
scheduled over two cycles. During the first cycle, OPA and
OPB occur. During the second cycle, OPC and OPD occur.
For simplicity, assume each operation in the DFG is an add.
There are 2 adder FUs allocated to bind the DFG.

The resource binding phase of HLS maps the 4 add op-
erations onto the 2 allocated adder FUs. Fig. 1B depicts 2
candidate bindings for our sample DFG. The green-shaded
region encloses operations bound to FU1. The red-shaded
region encloses operations bound to FU2. Let us assume that
we have knowledge of the input distribution for each operation,
a common assumption for HLS [22], [41]. This allows us
to estimate how often various input values (minterms) occur
for each operation during typical workloads. We have aggre-
gated these estimates for 4 arbitrary input minterms, denoted
{w, x, y, z}, during a typical workload below Fig. 1A.

By using the expected occurrence of input minterms, we
can estimate how often each input is applied to each adder.
We have compiled these estimates for each FU/binding below
Fig. 1B. Let us consider how security-informed decisions can
be made during resource binding to impact security for the two
combinational logic locking families, defined in Sec. II-A. We
emphasize that these families form a tautology. By exploring
both families our analysis considers all combinational locking.

B. Security-Aware Binding for Distributed Error Locking

Distributed error locking schemes are characterized by a
lack of critical minterms in their error profile (see Sec. II-A
for definitions). This means that error is distributed throughout
the input space without any one input minterm producing
output error (i.e., being locked) for a large subset of wrong
keys. The advantage of schemes in this locking family is their
ability to produce strong and non-probabilistic SAT resilience
guarantees [9]–[11]. A key limitation of these locking schemes
is their susceptibility to approximate attacks (Sec. II-B). This
limitation arises from the trade-off between the number of
locked inputs per wrong key and SAT attack resilience under-
lying logic locking [9]–[11]. To be SAT resilient, distributed

OPA

OPC OPD

Clk 1 OPB

Clk 2

a b c d e f

OPA

OPC OPD

Clk 1 OPB

Clk 2

a b c d e f
Binding 1

FU 2

OPA

OPC OPD

Clk 1 OPB

Clk 2

a b c d e f

FU 1FU 2

Binding 2

FU 1

A Scheduled Data
Flow Graph B Bound Data Flow Graph

Exp. Input Occurrences:
Input Minterm

0 6 9 0
4 0 0 7
0 10 8 0
3 0 0 4

w x y z
OPA
OPB
OPC
OPD

Exp. Input Occurrences:
Input Minterm

3 6 9 4
4 10 8 7

w x y z
FU 1
FU 2

Exp. Input Occurrences:
Input Minterm

0 16 17 0
7 0 0 11

w x y z
FU 1
FU 2

Fig. 1: Sample scheduled DFG and binding solutions.

error locking must lock only a few inputs per wrong key.
These locked inputs are distributed throughout the entire input
space of the locked module, with no one input producing
output error for the majority of wrong keys (i.e., no critical
minterms). However, because many commonly-locked mod-
ules only utilize a small fraction of their input space during
normal operation [8], there is a high probability that any given
wrong key will only produce corruption for inputs that are not
used during normal operation [7], [8]. If no locked inputs are
used for a given wrong key, no locking-induced corruption will
occur, mitigating the security of locking. Thus, there exists a
large subset of wrong keys that produce functionality good
enough to enable unauthorized use and IP piracy. These good
enough keys can be identified by an approximate-style attacker
and be used to bypass the security of locking [38]–[40]. Hence,
to secure against an untrusted foundry with distributed error
locking, we must maximize the number of wrong keys that
produce error during normal operation.

With this in mind, we return to our example in Fig.
1. Assume that a designer used a conventional, security-
agnostic binding algorithm, which has generated binding 1
for the circuit. The designer then decides to secure design IP
by locking FU 1 with a distributed error locking technique
following binding. To maximize IP security (i.e., corruption),
the designer would lock the majority of input minterms. This
ensures high application corruption regardless of wrong key.
However, SAT resilience is inversely related to the number
of locked inputs, hence, such an approach would result in
minimal SAT resilience. To meet SAT resilience constraints,
let us assume only a single input minterm can be locked
for each wrong key. Consider the following locking scenario.
Assume that FU 1, which has a 3-bit input (i.e., 8 total input
values), has been locked using SARLock [30], a prominent
distributed error logic locking technique. The resulting error
profile for locked FU 1 is in Tab. I. We note that a similar
error profile could be produced by many other distributed error
locking techniques, such as Anti-SAT [32]. This error profile
shows which input minterms (rows of the table) produce
corrupt output for a given wrong key (columns of the table).
To do so, Tab. I contains an ✗ at the intersection of a wrong
key/input when that input produces output corruption for a
wrong key (e.g., wk0 locks input w).

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 5

Key Input
Input wk0 wk1 wk2 wk3 ck4 wk5 wk6 wk7

s : 0 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓
t : 1 ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓
u : 2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗
v : 3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
w : 4 ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓
x : 5 ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓
y : 6 ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓
z : 7 ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

TABLE I: Error profile for locked FU1 that shows which
inputs produce an incorrect output for each key. An ✗ at an
input/key intersection indicates that the locked FU produces
incorrect output when that input/key combination is applied. A
✓ indicates that the circuit produces correct output when that
input/key combination is applied. Note that “wk” identifies
wrong key values and “ck” identifies a correct key (i.e., a key
where all inputs produce correct output.

Because we know the expected occurrence of various in-
puts for each operation and the error profile of the locking
configuration, we can estimate how many wrong keys for this
locked FU will corrupt a typical application. Notice that FU 1
in binding 1 executes OPA, which operates on inputs x, y, and
OPC , which operates on inputs x, y. Based on the error profile
in Tab. I, this means that the bound/locked circuit produces
output corruption for 2 wrong keys (wk1, wk2) during typical
workloads. Let us consider how security-aware binding can
increase the number of wrong keys producing corruption.

1) Security-Aware Binding: Consider the case where a
locking configuration has been specified prior to resource
binding. Following our prior example, this means FU 1 will
be locked by distributed error locking with the error profile
in Tab. I. However, instead of binding in a security-oblivious
fashion, let us bind the DFG in Fig. 1A to maximize the
wrong keys that lock an input applied to the locked FU (FU
1). In this case, binding 2 would be selected, resulting in 4
wrong keys (wk0 − wk3) injecting error. The advantage of
this approach is that the number of wrong keys that produce
corruption is doubled (4 vs. 2) compared to our prior security-
oblivious binding approach that selected binding 1. Because
the error profile of the locking technique is static, this results
in an increase in the number of wrong keys that derail
unauthorized IP use without compromising SAT resilience.
Remember, wrong keys must actually inject error within the
circuit to derail unauthorized use, hence, by ensuring that more
wrong keys inject error during normal operation, we maximize
the security of locking. Thus, by binding to maximize error-
producing wrong keys, a designer can create a locked circuit
substantially more likely to derail unauthorized use.

C. Security-Aware Binding for Critical Minterm Locking
Critical minterm locking schemes are characterized by the

presence of critical minterms in their error profile. This means
that a small set of locked inputs produce output corruption
for a large subset of (if not all) wrong keys. Logic locking
achieves security through the injection of locking-induced
corruption within the locked IC. Hence, a designer can en-
hance the security of critical minterm locking by maximizing

the occurrence of critical minterms in locked modules during
typical workloads. By doing so, a designer both 1) guarantees
that a large subset (if not all) wrong keys inject output
corruption, and 2) maximizes the number of errors injected.
In this way, critical minterm locking serves as a special
case of distributed error locking, whereby the security goal
of maximizing the wrong keys that produce corruption can
be achieved by ensuring that critical minterms occur during
typical workloads. Therefore, to secure against an untrusted
foundry with critical minterm locking, we aim to maximize
the occurrence of critical minterms during normal operation.

Let us return to our example in Fig. 1. Assume that a
designer used a conventional, security-agnostic binding al-
gorithm, which has generated binding 2 for the circuit. The
designer then decides to secure design IP by locking FU 1
with critical minterm locking that locks a single critical input,
randomly selected to be x. Whenever x is applied as input to
FU 1, regardless of the wrong key, output corruption will be
produced. Based on our estimates for the occurrence of input
x during a typical workload, we can estimate the occurrence of
critical inputs for our locked adder (FU 1). This corresponds
to the number of locking-induced application errors. Notice
that FU 1 in binding 2 executes OPA, which we estimate will
process input x 6 times, and OPD, which we estimate will
process input x 0 times. Thus, we expect 6 + 0 = 6 error
injections to be caused by locking during a typical workload.
Let us consider how security-aware binding can improve this.

1) Security-Aware Binding: Consider the case where the
locking configuration is specified prior to resource binding.
Thus, while binding the circuit, the designer has determined
that FU 1 protects critical input x. Because the locking
configuration is known, let us consider binding with locking
in mind. Specifically, consider binding the DFG in Fig. 1A
to maximize how often the locked input (x) will be applied
to the locked FU (FU 1). This leads to choosing binding
1, which produces 6 + 10 = 16 errors during a typical
workload. This approach to binding has 3 merits. 1) Because
the input x is typically applied to our locked FU, we ensure
that every wrong key will inject error. 2) The errors injected
by obfuscation are more than doubled (16 vs. 6) compared
to a conventional binding approach. Because the locked input
count is fixed, such an approach increases the corruptibility of
locking without degrading SAT resilience to do so. 3) Errors
are injected during both cycles of the schedule (clk 1 and 2)
instead of only one (clk 1). Consecutive errors increase the
probability of critically impacting the application. By binding
to maximize critical minterm occurrence, we have designed a
circuit with both more and higher quality application errors.

D. Security-Aware Binding to Enhance Logic Locking

For both locking families, we were able to use binding
decisions to leverage architectural context to enhance security.
For distributed error locking, we doubled the wrong keys
that produced corruption during typical workloads. For critical
minterm locking, we ensured that all wrong keys produced
corruption while also causing ∼2x more error injections. In
either case, the locked input count could be reduced while

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 6

simultaneously increasing the corruption of the locking con-
struction through making security-centered decisions during
binding. Essentially, security-aware binding decisions occur
outside of the trade-off between corruption and SAT resilience,
allowing them to enhance the security of logic locking.

IV. SECURITY-AWARE BINDING FOR DISTRIBUTED ERROR
LOCKING

Let us formalize an algorithm to solve the security-aware
binding problem for distributed error locking, outlined in
Sec. III-B. The security-aware binding problem requires a
scheduled DFG and a set of allocated resources, some of
which are locked, as input. For each locked FU, we assume
a SAT-resilient locking configuration (i.e., a sufficiently small
number of inputs are locked per wrong key) has been specified.
For locking techniques in the distributed error family, let us
assume that this locking specification includes 1) the number
of FUs locked and 2) the error profile for the locking scheme
used. Now, given a list of FUs, a scheduled DFG, and locking
details, we must bind operations to FUs to maximize the
wrong keys producing application error. Doing so maximizes
the corruption of the locking configuration, namely its ability
to restrict unauthorized use, while maintaining SAT resilience
(because the locking was configured to be SAT resilient a
priori). We begin by defining a cost function that quantifies
the number of error-producing wrong keys for a given binding.
We use this as a security metric to inform binding decisions.

A. Objective Cost Function for Distributed Error Locking

Suppose that we have scheduled and bound a DFG onto
FUs, some of which have been locked using distributed error
locking. We aim to quantify the impact of these locked FUs
on the number of wrong keys producing error in the DFG. We
capture this by counting the number of wrong keys that lock
inputs evaluated by a locked FU during the DFG’s execution.
The objective is to maximize these wrong keys which inject
error through appropriate binding decisions. Let us define the
set Xn to represent the set of inputs applied to operation n.
Thus, operation n operates on input x during normal operation
if x ∈ Xn. X can be calculated for a DFG by simulating
characteristic input traces or applications, which are typically
available during HLS [22], [41]. Given an input trace for the
DFG, we can perform time simulation to generate a set of
input minterms applied to each operation.

We now formalize a cost function to inform binding deci-
sions that quantifies the number of wrong keys that produce
application error for a given locking configuration in a bound
DFG. To do so, assume that L is the set of obfuscated FUs.
Each locked FU, l ∈ L, has a locking configuration with an
error profile El(x). For an input minterm x ∈ Xn, El(x)
returns the set of wrong keys that corrupt x for the locking
configuration. We define the set of wrong keys corrupted by
binding operation n to locked FU l to be:

Kl,n =
⋃

x∈Xn

El(x) (1)

If each l ∈ L binds a set of operations Nl, then the total
number of wrong keys that produce error for the binding is:

Kerr. =
∑
l∈L

∣∣∣∣ ⋃
n∈Nl

Kl,n

∣∣∣∣ (2)

B. Optimal Security-Aware Binding Algorithm

Let us develop a binding algorithm to map operations to
resources such that the wrong keys producing error (i.e., keys
that lock inputs applied to locked FUs), as quantified by Eqn.
2, is maximized. Consider the scheduled DFG, S, with a depth
of s cycles. The set R contains the resources allocated to bind
the DFG. In order to solve this problem, we do not make
any assumption regarding the type (e.g., addition) of resources
and operations being bound. However, we do assume that all
resources and operations are of the same type. This allows any
resource in R to bind any operation in the DFG. We can make
this assumption without any loss of generality by handling
all resource/operation types independently. Of the R allocated
resources, a subset, L, are obfuscated (L ⊆ R). Each l ∈ L
has a locking configuration with an error profile El(x). This
error profile is determined by the locking configuration used.
As such, it is specified by the user prior to binding.

During each cycle t (t ≤ s), a set of concurrent operations
Nt ⊂ S are scheduled. Binding maps each operation in Nt

to one of the allocated FUs (|R| ≥ |Nt|). We can trivially
determine the best security-aware binding solution according
to Eqn. 2 by enumerating and evaluating every possible
binding solution. Unfortunately, this problem is not separable
in any way. This is because any choice to bind an operation
to a locked FU alters the cost calculated by Eqn. 2 when
considering binding another operation to that same FU. Thus,
there is no way to separate the binding problem into smaller,
independent sub-problems enabling more efficient execution.

C. Heuristic Security-Aware Binding Algorithm

While a brute-force approach necessarily produces an op-
timal binding solution, it is not efficient. In this exhaustive
approach, bindings unlikely to produce an optimal solution
are still evaluated, inflating runtime. Consider the case where
2 operations, OPA and OPB , with input distributions, XA

and XB . If XA shares many members with XB then it is
unlikely that OPA and OPB would ever be bound to the same
FU because doing so would be redundant and provide little
increase in the cost calculated by Eqn. 2. A good heuristic
only considers bindings capable of substantially increasing the
number of wrong keys producing error. To do this, we propose
a greedy agglomerative clustering heuristic that binds the
operation producing the greatest increase in error-producing
wrong keys at a given time. Let us define this heuristic.

To bind the operations in an arbitrary DFG, we construct a
weighted bipartite graph B = (R∪N,E). Each vertex ri ∈ R
is an FU. Each vertex nj is an operation from the set of all
operations N (i.e., nj ∈ N). If ri can bind nj (i.e., the FU ri
is available and can run operation nj), an edge of weight wi,j

is added between these vertices. Initially, this should be the
case for all ri-nj pairs in the graph. If Ki,j is the set of wrong

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 7

OPA OPB OPC OPD

FU1

FU2

022 2 2 0 0 0

OPB OPC OPD

FU2

00 0 2 0 0

FU1

OPA

Super-Node

Iteration 1 Iteration 2

Wrong Keys Producing Error:
OPA={wk1,wk2}, OPB={wk0,wk3},
OPC={wk1,wk2}, OPD={wk0,wk3}
FU1={} , FU2={}
- Merge OPA with FU1

A B

Wrong Keys Producing Error:
 OPB={wk0,wk3},
OPC={wk1,wk2}, OPD={wk0,wk3}
FU1={wk1,wk2}, FU2={}
- Merge OPD with FU1

Fig. 2: Example of the security-aware binding heuristic for
distributed error locking binding the DFG in Fig. 1A.

keys corrupted during normal operation when operation j is
bound to for FU i, then the weight, wi,j , is:

wi,j = |Ki,j | (3)

To bind, we select the maximum weight edge in the graph and
merge the node for this operation, nj , into the corresponding
resource node, ri. This produces a super-node, containing both
resource ri and operation nj , which represents binding nj to
ri. The weighted bipartite graph is now reconstructed with this
new super-node, which we call r′i, replacing ri.

To bind a new operation j, edge weights between non-bound
operations and the super-node r′i must be re-calculated with:

w′
i,j =

∣∣∣∣Ki,j −
⋃

n∈Ni

Ki,n

∣∣∣∣ (4)

where Ni is the set of operations currently bound to FU i.
Thus, w′

i,j quantifies the increase in the number of wrong
keys causing error if operation j is bound to resource i that
already has operations in the set Ni bound to it. Note that
the edge weights connected to non-locked FUs are always 0.
Similarly, any edges to operations that occur during the same
cycle as an operation in super-node r′i must not be included,
as they are not valid bindings. Greedy clustering proceeds in
this fashion until no operations (i.e., nodes) remain in N for
the graph. The final binding solution is constructed by binding
each operation to the resource present in its super-node.

To demonstrate the heuristic, consider the binding problem
from Sec. III-B. There are 2 FUs, R = {FU1, FU2},
allocated to bind the DFG in Fig. 1A. FU1 is locked with the
error profile in Tab. I. To bind this DFG, we initially produce
the bipartite graph in Fig. 2A. An edge weight of 2 exists
between each operation and FU1 because binding any of these
operations to FU1 increases the number of error-producing
wrong keys by 2. Thus, any operation can be merged with
FU1 during iteration 1. We arbitrarily select OPA and create
a super-node containing FU1 and OPA. Our bipartite graph
is reconstructed with this super-node, depicted in Fig. 2B. At
this point, only the edge between the super-node and OPD has
non-zero weight because only OPD produces corruption for
new keys (i.e., wk0, wk3). Thus, iteration 2 merges OPD with
the super-node containing {FU1, OPA}, making a new super-
node of {FU1, OPA, OPD}. The bipartite graph is again
regenerated and the algorithm proceeds until no edges remain.

This yields binding 2 from Fig. 1B, which indeed maximizes
the error-producing wrong keys.

D. Analysis of Proposed Security-Aware Binding Algorithms

Note the following 3 properties of the proposed algorithms.
1) Runtime Complexity: The optimal security-aware bind-

ing algorithm assesses every possible binding configuration for
all locked FUs. If there are |R| FUs, |L| of which are locked
(|R| ≥ |L|), there is at most |R| operations bound during
each cycle of the schedule. If we assume the schedule is of
length s, then there exists at most

(|R|
|L|

)s
binding solutions for

the locked FUs. This yields a super-polynomial complexity.
However, consider the greedy heuristic, which maps the oper-
ation causing the biggest increase in error-producing wrong
keys to a locked FU for each iteration. In this case, edge
weight must be calculated between each un-bound operation in
the DFG and locked resource. There are |N | total operations
in the DFG, hence, edge weight must be calculated for at
most |N ||L| operation/FU combinations. If we assume that the
wrong keys corrupting an input trace for an operation is stored
in a sorted list K, the edge weight (Eqn. 4) can be calculated
in O(|K|). This graph is constructed at most |N | times to map
every operation to an FU, resulting in a time complexity of
O(|N |2|L||K|) for the heuristic, a P-time solution.

2) Validity and Completeness of Binding Solution:

Theorem 1. The security-aware binding heuristic will produce
a valid and complete binding solution, if it exists.

We omit a detailed proof, however, this follows from 2
aspects of the heuristic. First, bipartite edges are only added
between FUs and operations capable of being bound together.
As a result, FUs that already have operations from a given
cycle bound to them will not have edges to other operations
in that same cycle. This guarantees a valid solution. Second,
the algorithm terminates when no edges remain. This can only
occur when all operations have been bound to an FU, a com-
plete binding solution, or when there are not enough resources
available to bind operations in a cycle (i.e., |Ni| > |R| for
cycle i), in which case there is no valid binding. Thus, a valid
and complete binding solution is produced, if it exists.

3) Security Impact: The security-aware binding algorithms
we have proposed bind a circuit to maximize the wrong keys
causing error for a fixed locking configuration. Remember,
the locking configuration dictates the SAT resilience of the
design. Therefore, because the locking configuration is not
altered during binding, our algorithms enhance the security of
logic locking without reducing SAT resilience to do so.

V. SECURITY-AWARE BINDING FOR CRITICAL MINTERM
LOCKING

Now, let us consider the security-aware binding problem
in the context of critical minterm locking. As we noted
in Sec. III-C, critical minterm locking serves as a special
case of distributed error locking, whereby our security goal
of maximizing the number of wrong keys producing error
can be trivially achieved by maximizing the occurrence of
critical minterms on locked FUs. Doing so also has the added

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 8

impact of maximizing locking-induced errors. As we show,
this allows the security-aware binding problem to be solved
more efficiently for critical minterm locking. To begin, we
define an objective cost function for critical minterm locking to
quantify locking-induced application errors for a fixed binding.

A. Objective Cost Function for Critical Minterm Locking

Suppose that we have scheduled and bound a DFG onto FUs
locked using critical minterm locking. We aim to quantify the
impact of these locked FUs on error in the DFG. We capture
this error by counting the number of times a locked input is
evaluated by a locked FU during the DFG’s execution. The
objective is to maximize these error injecting events through
smart binding decisions. Let us define matrix µ to represent
the occurrence of each locked input for each operation. The
number of times the locked input m is applied for operation n
is µm,n. µ is calculated using the “typical” input traces that are
available during HLS [22], [41]. Given an input trace for the
DFG, we can perform time simulation to calculate the number
of times a given locked input is applied to each operation.

Based on µ, we define an objective cost function to inform
binding that quantifies the expected number of application
errors for a given locking configuration in a bound DFG. To
do so, assume that each locked FU, l ∈ L, locks a set of inputs
Ml and binds a set of operations Nl. The expected number of
application errors caused by this locking configuration is:

Err. =
∑
l∈L

∑
m∈Ml

∑
n∈Nl

µm,n (5)

B. Security-Aware Binding Algorithm

Using the cost function in Eqn. 5, we develop a binding
algorithm that maps operations to FUs such that the application
errors (i.e., when locked inputs are applied to locked FUs) are
maximized. Consider a scheduled DFG, S, spanning s cycles.
A set of resources, R, has been allocated to bind the DFG. Of
these R resources, L have been locked (L ⊆ R). Each l ∈ L
locks a set of critical inputs Ml, which are pre-determined.

During each cycle t (t ≤ s), a set of concurrent operations
Nt ∈ S are scheduled. Binding requires us to map each
operation in Nt to one of the allocated FUs (i.e., |R| ≥ |Nt|).
Consider the first cycle of the DFG, t = 1. To bind the
operations at t = 1 (N1), we build a weighted bipartite graph,
B1 = (R ∪ N1, E1). Each vertex ri ∈ R is an FU. Each
vertex nj ∈ N1 is an operation. If ri can bind nj (i.e., the FU
ri is available and can run operation nj), an edge of weight
wi,j is added. This should be the case for all ri-nj pairs, so
a complete bipartite graph is produced. The weight, wi,j , is:

wi,j =
∑

m∈Mi

µm,j (6)

where Mi is the set of locked inputs for FU i and µm,j is the
expected occurrences of locked input m ∈ Mi for operation j.
Thus, wi,j is the number of times locked inputs will be applied
to resource i if operation j is bound to it. Note that the edge
weights connected to non-locked FUs will be 0. We solve the
max weight bipartite matching problem for B1, which can be

FU1

OPA

OPC OPD

Clk 1 OPB

Clk 2

a b c d e f
A Scheduled DFG

OPE

g
B Locking Config.

FU2

FU3

x y

FU1 FU2 FU3
x y

OPA OPB

6 9
0 4

3 0

Allocated FUs: 3
FU 1: Locked
Locked Input: 'x'
FU 2: Locked
Locked Input: 'y'
FU 3: Not Locked
Locked Input: None

C Bipartite Binding
(Clk 1, t=1)

Binding Solution for t=1:
OPA mapped to FU2
OPB mapped to FU1
Total Cost of Binding: 13

Exp. Input Occurrences:
Input 'x': OPA=6, OPB=4, OPC=3,
 OPD=0, OPE=10
Input 'y': OPA=9, OPB=3, OPC=7,
 OPD=0, OPE=8

Fig. 3: Security-aware binding algorithm for clock 1 (t=1).

solved optimally in P-time. The resulting match maps (binds)
each operation during clock t = 1 to an available FU.

To demonstrate this algorithm, consider the DFG in Fig.
3A, which spans two clocks. There are 3 FUs, R =
{FU1, FU2, FU3} shown in Fig. 3B, allocated to bind this
DFG. Of these FUs, two are locked, L = {FU1, FU2}, with
locked inputs MFU1 = {x} and MFU2 = {y}. For this DFG’s
typical input trace, the number of times each locked input (x
and y) was applied to each operation is below Fig. 3A. For
t = 1, the proposed algorithm produces the bipartite graph
in Fig. 3C. A max weight matching of this graph selects the
red and green colored edges, mapping OPA to FU2, with
edge weight 9, and OPB to FU1, with edge weight 4. FU3
is unused during this clock because only two operations are
executed. This produces a binding for clock 1 that injects
9 + 4 = 13 errors for the typical input trace.

The described approach produces a binding for clock t =
1. This algorithm must be repeated for the remaining s − 1
clocks to produce a complete binding solution. Thus, we must
generate and match a bipartite graph, Bt, for the remaining
t = 2..s clocks in the schedule. Notice that the considered
operations change for each cycle (t), but the FUs in R do not.
Also, the bipartite graph for each cycle (Bt) has no dependence
on other cycles. Thus, binding decisions made in one cycle do
not conflict with another cycle, allowing each clock cycle to
be bound independently and in any order (separability).

By matching each set of concurrent operations to allocated
resources, we bind each operation to maximize the number of
locked inputs applied to locked FUs during the typical input
trace/application. This maximizes the application errors caused
by locking for the characteristic workload (proved in Thm. 3).

C. Analysis of Proposed Security-Aware Binding Algorithm

Note the following 3 properties of the proposed algorithm.
1) Runtime Complexity: To bind an arbitrary scheduled

DFG with s cycles, the proposed algorithm must generate
and match s complete weighted bipartite graphs. Each graph
has |Nt| operations (sources) that must be matched to one
of the |R| resources (destinations) with a maximum weight.
A minimum weighted full match of an m-source and n-
destination bipartite graph can be performed in O(mnlog(n))
[45]. By negating each edge weight (wi,j) and assuming
that |Nm| is the maximum number of concurrent operations

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 9

in the DFG, security-aware binding can be completed in
O(s|Nm||R|log(|R|)). Thus, the algorithm runs in P-time.

2) Validity and Completeness of Binding Solution:

Theorem 2. The security-aware binding algorithm will pro-
duce a valid and complete binding solution, if it exists.

We omit a proof, however, during each clock cycle bipartite
matching ensures a valid match between operations and FUs.
This means that all operations in all clocks are bound to only
one FU, with no more than one operation in a cycle bound to
a given FU. Hence, the final solution is valid and complete.

3) Optimality of Binding Solution:

Theorem 3. The security-aware binding algorithm yields the
maximum application errors for a locking configuration.

Proof. To bind a DFG, a bipartite graph must be generated
and fully matched for each cycle in the schedule (t = 1..s).
Each graph has a source node for every operation n ∈ Nt

and a destination node for each resource in R. Every source-
destination pair is connected by an edge of weight wi,j , which
is equal to the number of occurrences of each locked input for
FU j during operation i. A bipartite graph defined in this way
for cycle t (1 ≤ t ≤ s) is necessarily independent of the
bipartite graph for all other cycles. Hence, the full matching
produced for each bipartite graph is independent. This means
the binding for each cycle in the schedule is separable.

Now, consider that each edge weight in the bipartite graph
is equal to the number of occurrences of each locked input for
FU j during operation i (i.e., expected error injections). By
definition, a maximum weight full matching of this bipartite
graph corresponds to the operation-FU mapping (binding) that
causes the most error injections. Hence, the full matching for
each bipartite graph is optimal for a given cycle in the DFG.
Because each bipartite matching produces the maximum error
injections for that cycle and the bipartite graph for each cycle
is separable, the total binding solution yields the maximum
expected error injections for the locking scheme.

Thus, the proposed algorithm binds the circuit to optimally
generate application corruption for a fixed locking scheme.
Remember that this locking configuration was specified prior
to binding to lock few enough inputs to resist SAT-style
attacks. Therefore, the proposed security-aware binding al-
gorithm guarantees the maximum achievable corruption is
achieved without degrading SAT resilience to do so.

VI. EVALUATION OF SECURITY-AWARE BINDING

To evaluate our security-aware binding algorithms, we ap-
plied them to bind adder and multiplier FUs in 11 benchmark
DFGs. These benchmarks were created by isolating 11 C
functions from 8 MediaBench benchmarks [24] and extracting
their DFG with SUIF. A path-based scheduler [46] was used
to schedule each extracted DFG such that no more than 3 FUs
of any type were needed to bind it. The resulting benchmarks
had 18.6 add and 10.6 multiply operations over 13.5 cycles
on average. For each benchmark, we used the MediaBench
sample workloads to generate our typical application (i.e.,
characteristic input trace). To do so, a trace driven simulator

calculated the occurrence of input minterms for each operation
in the DFG. The typical application and scheduled DFG were
the inputs for each security-aware algorithm. The benchmark
generation flow is shown in Fig. 4.

SUIF
Compiler

C/C++ Function

Scheduler
Input
DFGs

Trace Driven
Simulator

Sched.
DFG

Input Trace

Exp. Input
Occurrence

Per Op.

Fig. 4: Process to generate benchmark circuits.

To empirically assess the proposed security-aware binding
algorithms, we compared them to alternative binding algo-
rithms run on circuits with identical logic obfuscation config-
urations. For this comparison, we used an area-aware approach
[23], which minimizes register count, and a power-aware
approach [22], which minimizes switching frequency. For each
benchmark, we enumerated combinations of {1,2,3} locked
FUs with varied locking configurations. For each enumerated
locked FU/locking configuration, we created a bound/locked
circuit using 1) our proposed security-aware, 2) area-aware,
and 3) power-aware binding algorithms. We then calculated
the ratio of the effectiveness of our proposed security-aware
approach compared to each area/power-aware approach with
the same locking configuration. In this way, we compared each
circuit created with a security-aware algorithm to the same
circuit incorporating an identical locking configuration created
with an area/power-aware algorithm. This isolates security-
improvements caused by security-aware binding across numer-
ous circuits and obfuscation configurations.

A. Experimental Analysis: Distributed Error Locking

To evaluate security-aware binding for distributed error
locking, we used 4 locking configurations with different error
profiles in {1,2,3} locked FUs. These configurations were
selected to provide a reasonable cross-section of the error
profiles used by distributed error locking schemes. The first
configuration we considered was from a 256-bit implemen-
tation of CASLock (P=1) [25]. An identical error profile
could be produced by many other techniques including Anti-
SAT [32] and SARLock [30]. The other 3 configurations we
considered randomly locked {0.01%, 0.001%, and 0.0001%}1

of the input space for each wrong key. These configurations
simulate the error profile produced by techniques such as
LUT-Lock [28], InterLock [27], and others [29], [31]. For
all 12 locking configurations (i.e. 4 error profiles, {1,2,3}
locked FUs), we created a bound/locked circuit for each bench-
mark. We then calculated the ratio between the number of
wrong keys corrupting the characteristic application after our
security-aware binding approach compared to an area/power-
aware approach with the same locking configuration. The
results were averaged over every benchmark for Fig. 5.

Fig. 5 shows that optimal security-aware binding increased
the wrong keys corrupting the characteristic application by
an average of 52%, 30%, and 13% for 1, 2, and 3 locked

1Remember, locked inputs per key must be kept low to resist SAT [9], [10]

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 10

dct ecb_enc4 fft fir jctrans2 jdmerge1 jdmerge3 jdmerge4 motion2 motion3 noisest2 Avg.
100

101

102

In
cr

ea
se

 in
 A

pp
.

Er
ro

rs
 o

f L
oc

ki
ng Increase in Application Errors Caused by Locking for Obfuscation-Aware Binding Over Area/Power-Aware Binding

CASLock (P=1) Random 0.0001% Random 0.001% Random 0.01%
1 Lock FU 2 Lock FU 3 Lock FU 1 Lock FU 2 Lock FU 3 Lock FU 1 Lock FU 2 Lock FU 3 Lock FU 1 Lock FU 2 Lock FU 3 Lock FU

0

25

50

%
 In

cr
ea

se
 K

ey
s

w/
 A

pp
. E

rro
r

Adder, Area-Aware
Adder, Area-Aware (Heuristic)

Adder, Power-Aware
Adder, Power-Aware (Heuristic)

Mult., Area-Aware
Mult., Area-Aware (Heuristic)

Mult., Power-Aware
Mult., Power-Aware (Heuristic)

Fig. 5: Efficacy of security-aware binding for distributed error locking. Bars normalized to area [23]/power [22] aware binding.

FUs when compared to area/power-aware binding. Our P-
time heuristic degraded the solution only slightly, producing a
50%, 27%, and 11% increase in application-corrupting wrong
keys. This supports the utility of the security-aware binding
heuristic. Because the performance degradation is small, we
use this heuristic for the remaining evaluation. Based on these
results, security-aware binding improved the security of dis-
tributed error locking (i.e., wrong keys producing corruption),
regardless of configuration, without sacrificing SAT resilience.

We make 2 more observations from Fig. 5. First, there
was a ∼3% degradation in the performance of our binding
algorithms compared to area/power binding for every order-
of-magnitude increase in the locked inputs per wrong key.
This is intuitive. As more wrong keys lock each input, the
difference in input distribution between operations will result
in a less disjoint set of wrong keys corrupted. Moreover, as
wrong keys begin to lock sizable portions of the input space,
the majority of wrong keys would produce error, regardless of
binding decisions, reducing the security impact of binding.
However, locked inputs per wrong key must be kept very
small to ensure SAT resilience, reducing the impact of this
trend. Second, the security improvement provided by security-
aware binding decreased as more FUs were locked in the
benchmark. Again, this makes sense. As more FUs are locked
in a design, more operations (and their corresponding input
minterms) are bound to locked FUs. Thus, it becomes more
likely that advantageous operations are bound to locked FUs
given that there are simply more locked FUs in the system.
This lessens the security impact of binding decisions. We
note that most research tightly limits allowable logic locking
overhead making it unlikely that the majority of FUs in a
design would be locked due to overhead constraints [2].

B. Experimental Analysis: Critical Minterm Locking

To evaluate critical minterm locking in each benchmark, we
enumerated all combinations of {1,2,3} locked FUs locking
{1,2,3} critical inputs each. Based on our trace-based sim-
ulation of the DFG for each benchmark, we determined the
10 most common input values as candidate critical minterms.

For the 9 candidate locking configurations (i.e., {1,2,3}
locked FUs locking {1,2,3} critical inputs), we created a
bound/locked circuit securing each combination of the 10
candidate inputs for each locked FU. We then normalized
the application errors produced by the security-aware circuit
to those produced by an area/power-aware binding with the
same locking configuration. These results, averaged over every
locked FU count, critical minterm count, and locked input
combination, are in Fig. 6.

Based on Fig. 6, all benchmarks had an occurrence of a
critical input (i.e., locking-induced error). Thus, in all cases,
100% of wrong keys produced corruption in the characteristic
application. Moreover, security-aware binding increased the
application errors caused by the locking construction by 22x
and 29x compared to area and power aware binding. Thus,
our security-aware algorithms caused sizable increases in
application errors, without sacrificing SAT resilience.

1 FU 2 FUs 3 FUs
1 Lock Inp.

2 Lock Inp.
3 Lock Inp. Avg.

100

101

102

In
cr

ea
se

 in
 A

pp
.

Er
ro

rs
 o

f L
oc

ki
ng

Sec.-Aware vs. Area-Aware Sec.-Aware vs. Power-Aware

Fig. 7: Impact of critical minterm locking configuration on
error from security-aware binding. Results normalized to error
caused by identical locking applied after area/power binding.

We have aggregated the impact of locking configuration on
the efficacy of each binding algorithm for critical minterm
locking in Fig. 7. To generate Fig. 7, we fixed a single locking
parameter, listed on the x-axis, and averaged our results over
all other locking parameters (e.g., the “1 FU” bars average
over locking with {1,2,3} critical inputs). In this way, we
isolated the impact of each parameter on the performance of
our security-aware algorithm. Based on Fig. 7, increases in
error were consistent in all cases. Remember, all increases
were normalized to the error caused by area/power binding for
the same locking configuration (i.e., locked FU count, critical

dct ecb_enc4 fft fir jctrans2 jdmerge1 jdmerge3 jdmerge4 motion2 motion3 noisest2 Avg.
100

101

102

In
cr

ea
se

 in
 A

pp
.

Er
ro

rs
 o

f L
oc

ki
ng Increase in Application Errors Caused by Locking for Obfuscation-Aware Binding Over Area/Power-Aware Binding

dct ecb_enc4 fft fir jctrans2 jdmerge1 jdmerge3 jdmerge4 motion2 motion3 noisest2 Avg.
100

101

102

In
cr

ea
se

 in
 A

pp
.

Er
ro

rs
 o

f L
oc

ki
ng

Adder, Area-Aware Adder, Power-Aware Mult., Area-Aware Mult., Power-Aware

Fig. 6: Efficacy of security-aware binding for critical minterm locking. Bars normalized to area [23]/power [22] aware binding.
No multipliers are in ecb enc4, hence, these bars are not present.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 11

Distributed Error Critical
Minterm

CA
S-

Lo

ckRn
d.

0.0

1%Rn
d.

0.0

01
%

Rn
d.

0.0

00
1%

 C
rit

ica
l

Mint
er

m

0

2

4

6

In
cr

ea
se

 in
Re

gi
st

er
 C

ou
nt

A) Overhead vs.
Area-Aware Binding

Distributed Error Critical
Minterm

CA
S-

Lo

ckRn
d.

0.0

1%Rn
d.

0.0

01
%

Rn
d.

0.0

00
1%

0.00

0.02

0.04

0.06

In
cr

ea
se

 in
Sw

itc
hi

ng
 Fr

eq
.

B) Overhead vs.
Power-Aware Binding

 C
rit

ica
l

Mint
er

m

Fig. 8: Area/power overhead of security-aware binding com-
pared to area [23]/power [22] aware binding.

input count, and critical input identity). Thus, Fig. 7 suggests
that security-aware binding yields a consistent increase in
error, no matter the underlying locking construction.

C. Security-Aware Binding Design Overhead

Each security-aware binding algorithm makes binding deci-
sions to enhance logic locking. These security-aware decisions
are made at the expense of alternative design goals. To assess
the impact of security-aware binding on these other goals,
we compare circuits produced by binding the same DFG
with 1) security-aware binding, 2) area-aware binding [23],
which minimizes register count, and 3) power-aware binding
[22], which minimizes switching frequency. The results of this
comparison aggregated over all 11 benchmarks are in Fig. 8/9.

Security-aware binding used 4.8 more registers than area-
aware binding, regardless of locking configuration (Fig. 8).
Another side-effect of area-aware binding is the maximization
of register re-use. This minimizes the size of the multiplexers
on the input of each FU. Because larger multiplexers have
worse timing, this approach also helps reduce timing. We have
aggregated the average increase in the inputs to the largest
multiplexer in the design and the average timing overhead
of security-aware compared to area-aware binding using the
Cadence Encounter RTL Compiler with the Synopsys 90nm
SAED library in Fig. 9. On average, security-aware binding
required a largest multiplexer with 2.2 more inputs causing a
timing overhead of 1.7% over area-aware binding.

With respect to power-aware binding, our proposed algo-
rithms for distributed error locking exhibited a 0.05 higher
switching rate, compared to a 0.03 higher switching rate for
critical minterm locking (Fig. 8). This difference between lock-
ing families makes sense. The cost function for distributed er-
ror locking (i.e., maximizing error-causing wrong keys) favors
binding operations with diverse inputs together. Such binding
decisions increase the probability of bit-flips between inputs,
increasing switching rate. Alternatively, the cost function for
critical minterm locking does not favor binding operations with
disparate inputs together, instead favoring binding operations
with a high occurrence of a few critical minterms to locked
FUs. This results in reduced power overhead.

VII. CONCLUSION

We explored security-aware binding during HLS to enhance
logic locking. To do so, we bifurcated logic locking schemes
into 2 families: distributed error and critical minterm. We de-
veloped security-aware resource binding algorithms to enhance

Distributed Error Critical
Minterm

CA
S-

Lo

ckRn
d.

0.0

1%Rn
d.

0.0

01
%

Rn
d.

0.0

00
1%

Se
c.-

Aw
are

Bin
din

g

0

1

2

3

Av
g.

 In
cr

ea
se

 in
La

rg
es

t M
UX

 In
pu

ts Distributed Error Critical
Minterm

CA
S-

Lo

ckRn
d.

0.0

1%Rn
d.

0.0

01
%

Rn
d.

0.0

00
1%

Se
c.-

Aw
are

Bin
din

g

0

1

2

Av
g.

 T
im

in
g

Ov
er

he
ad

 (%
)

Fig. 9: Timing overhead of security-aware binding algorithms
compared to area-aware [23] binding algorithm.

locking from both families without sacrificing SAT resilience.
To evaluate these algorithms, we applied them to 11 Medi-
aBench benchmarks and their typical applications. For dis-
tributed error locking, our security-aware binding algorithms
designed locked circuits corrupting a typical application for
52% more wrong keys than a circuit bound with conventional
schemes. For critical minterm locking, our security-aware
binding algorithms designed locked circuits corrupting typical
applications for 100% of wrong keys while also exhibiting
26x more errors in those applications than a circuit bound
with conventional schemes. Regardless of locking family, our
binding/locking solutions maintained SAT resilience while
incurring minimal design overhead. Thus, security-aware bind-
ing enhances logic locking without sacrificing SAT resilience.

REFERENCES

[1] M. Rostami, F. Koushanfar, and R. Karri, “A primer on hardware
security: Models, methods, and metrics,” Proceedings of the IEEE, pp.
1283–1295, 2014.

[2] A. Chakraborty et al., “Keynote: A disquisition on logic locking,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 2019.

[3] H. M. Kamali, K. Z. Azar, F. Farahmandi, and M. Tehranipoor, “Ad-
vances in logic locking: Past, present, and prospects,” Cryptology ePrint
Archive, 2022.

[4] K. Shamsi et al., “Ip protection and supply chain security through
logic obfuscation: A systematic overview,” ACM Transactions on Design
Automation of Electronic Systems (TODAES), pp. 1–36, 2019.

[5] P. Subramanyan, S. Ray, and S. Malik, “Evaluating the security of
logic encryption algorithms,” in International Symposium on Hardware
Oriented Security and Trust (HOST). IEEE, 2015.

[6] K. Z. Azar, H. M. Kamali, H. Homayoun, and A. Sasan, “Smt attack:
Next generation attack on obfuscated circuits with capabilities and
performance beyond the sat attacks,” Transactions on Cryptographic
Hardware and Embedded Systems, 2019.

[7] K. Shamsi, D. Z. Pan, and Y. Jin, “On the impossibility of
approximation-resilient circuit locking,” in Intl. Symp. on Hardware
Oriented Security and Trust, 2019.

[8] M. Zuzak and A. Srivastava, “Obfusgem: Enhancing processor design
obfuscation through security-aware on-chip memory and data path
design,” in International Symposium on Memory Systems. ACM, 2020.

[9] M. Zuzak, Y. Liu, and A. Srivastava, “Trace logic locking: Improv-
ing the parametric space of logic locking,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2020.

[10] H. Zhou, A. Rezaei, and Y. Shen, “Resolving the trilemma in logic
encryption,” in International Conference on Computer-Aided Design
(ICCAD), 2019.

[11] K. Shamsi et al., “On the approximation resiliency of logic locking and
ic camouflaging schemes,” IEEE Transactions on Information Forensics
and Security, vol. 14, no. 2, pp. 347–359, 2018.

[12] C. Pilato et al., “Optimizing the use of behavioral locking for high-level
synthesis,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 2022.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 12

[13] S. A. Islam, L. K. Sah, and S. Katkoori, “High-level synthesis of
key-obfuscated rtl ip with design lockout and camouflaging,” ACM
Transactions on Design Automation of Electronic Systems, pp. 1–35,
2020.

[14] M. R. Muttaki, R. Mohammadivojdan, M. Tehranipoor, and F. Farah-
mandi, “Hlock: Locking ips at the high-level language,” in ACM/IEEE
Design Automation Conference (DAC), 2021, pp. 79–84.

[15] C. Pilato et al., “Assure: Rtl locking against an untrusted foundry,” IEEE
Transactions on Very Large Scale Integration Systems, pp. 1306–1318,
2021.

[16] N. Limaye et al., “Fortifying rtl locking against oracle-less (untrusted
foundry) and oracle-guided attacks,” in ACM/IEEE Design Automation
Conference (DAC), 2021, pp. 91–96.

[17] C. Pilato, F. Regazzoni, R. Karri, and S. Garg, “Tao: techniques
for algorithm-level obfuscation during high-level synthesis,” in Design
Automation Conference, 2018.

[18] M. Yasin, C. Zhao, and J. J. Rajendran, “Sfll-hls: Stripped-
functionality logic locking meets high-level synthesis,” in Intl. Conf.
on Computer-Aided Design, 2019.

[19] J. Chen et al., “Decoy: Deflection-driven hls-based computation par-
titioning for obfuscating intellectual property,” in ACM/IEEE Design
Automation Conference (DAC). IEEE, 2020.

[20] M. Zuzak, Y. Liu, and A. Srivastava, “A resource binding approach
to logic obfuscation,” in ACM/IEEE Design Automation Conference
(DAC). IEEE, 2021, pp. 235–240.

[21] C. Karfa et al., “Is register transfer level locking secure?” in 2020
Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2020, pp. 550–555.

[22] J.-M. Chang and M. Pedram, “Register allocation and binding for low
power,” in ACM/IEEE Design Automation Conference (DAC), 1995.

[23] C.-Y. Huang, Y.-S. Chen, Y.-L. Lin, and Y.-C. Hsu, “Data path allo-
cation based on bipartite weighted matching,” in Design Automation
Conference, 1991.

[24] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “Mediabench: A
tool for evaluating and synthesizing multimedia and communications
systems,” in International Symposium on Microarchitecture. IEEE,
1997.

[25] B. Shakya, X. Xu, M. Tehranipoor, and D. Forte, “Cas-lock: A
security-corruptibility trade-off resilient logic locking scheme,” IACR
Transactions on Cryptographic Hardware and Embedded Systems, pp.
175–202, 2020.

[26] A. Saha et al., “Lopher: Sat-hardened logic embedding on block ci-
phers,” in ACM/IEEE Design Automation Conference (DAC), 2020.

[27] H. M. Kamali, K. Z. Azar, H. Homayoun, and A. Sasan, “Interlock:
An intercorrelated logic and routing locking,” in 2020 IEEE/ACM
International Conference On Computer Aided Design (ICCAD). IEEE,
2020, pp. 1–9.

[28] H. M. Kamali et al., “Lut-lock: A novel lut-based logic obfuscation for
fpga-bitstream and asic-hardware protection,” in IEEE Computer Society
Annual Symposium on VLSI. IEEE, 2018, pp. 405–410.

[29] H. M. Kamali, K. Z. Azar, H. Homayoun, and A. Sasan, “Full-
lock: Hard distributions of sat instances for obfuscating circuits using
fully configurable logic and routing blocks,” in Design Automation
Conference (DAC), 2019.

[30] M. Yasin, B. Mazumdar, J. J. Rajendran, and O. Sinanoglu, “Sarlock: Sat
attack resistant logic locking,” in 2016 IEEE International Symposium
on Hardware Oriented Security and Trust (HOST). IEEE, 2016, pp.
236–241.

[31] M. Yasin, J. J. Rajendran, O. Sinanoglu, and R. Karri, “On improving
the security of logic locking,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 35, no. 9, pp. 1411–
1424, 2015.

[32] Y. Xie and A. Srivastava, “Anti-sat: Mitigating sat attack on logic
locking,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 38, no. 2, pp. 199–207, 2018.

[33] K. Shamsi, M. Li, D. Z. Pan, and Y. Jin, “Cross-lock: Dense layout-
level interconnect locking using cross-bar architectures,” in Great Lakes
Symp. on VLSI, 2018.

[34] M. Yasin et al., “Provably-secure logic locking: From theory to practice,”
in Conference on Computer and Communications Security, 2017.

[35] A. Sengupta, M. Nabeel, M. Yasin, and O. Sinanoglu, “Atpg-based cost-
effective, secure logic locking,” in IEEE 36th VLSI Test Symposium
(VTS). IEEE, 2018.

[36] A. Sengupta et al., “Truly stripping functionality for logic locking: A
fault-based perspective,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 2020.

[37] Y. Liu et al., “Robust and attack resilient logic locking with a high
application-level impact,” ACM Journal on Emerging Technologies in
Computing Systems (JETC), vol. 17, no. 3, pp. 1–22, 2021.

[38] K. Shamsi et al., “Appsat: Approximately deobfuscating integrated
circuits,” in 2017 IEEE International Symposium on Hardware Oriented
Security and Trust (HOST). IEEE, 2017, pp. 95–100.

[39] Y. Shen and H. Zhou, “Double dip: Re-evaluating security of logic
encryption algorithms,” in Great Lakes Symposium on VLSI, 2017, pp.
179–184.

[40] Y. Shen, A. Rezaei, and H. Zhou, “A comparative investigation of
approximate attacks on logic encryptions,” in Asia and South Pacific
Design Automation Conference. IEEE, 2018, pp. 271–276.

[41] A. Stammermann et al., “Binding allocation and floorplanning in low
power high-level synthesis,” in International Conference on Computer
Aided Design. IEEE, 2003.

[42] M. Yasin, B. Mazumdar, O. Sinanoglu, and J. Rajendran, “Removal at-
tacks on logic locking and camouflaging techniques,” IEEE Transactions
on Emerging Topics in Computing, vol. 8, no. 2, pp. 517–532, 2017.

[43] D. Sirone and P. Subramanyan, “Functional analysis attacks on logic
locking,” IEEE Transactions on Information Forensics and Security,
vol. 15, pp. 2514–2527, 2020.

[44] M. E. Massad, J. Zhang, S. Garg, and M. V. Tripunitara, “Logic locking
for secure outsourced chip fabrication: A new attack and provably secure
defense mechanism,” arXiv preprint arXiv:1703.10187, 2017.

[45] R. M. Karp, “An algorithm to solve the m× n assignment problem in
expected time o (mn log n),” Networks, 1980.

[46] S. O. Memik, E. Bozorgzadeh, R. Kastner, and M. Sarrafzadeh, “A
super-scheduler for embedded reconfigurable systems,” in International
Conference on Computer Aided Design, 2001.

Michael Zuzak (S’19, M’22) is an Assistant Pro-
fessor in the Department of Computer Engineering
at the Rochester Institute of Technology, Rochester,
NY, USA. He received his Ph.D. in Electrical En-
gineering from the University of Maryland, College
Park, MD, USA in 2022. His current research inter-
ests include hardware security, computer architec-
ture, and electronic design automation.

Yuntao Liu (S’16, M’21) is an Assistant Research
Scientist at the University of Maryland, College
Park. He received his Ph.D. in Electrical Engineering
from the University of Maryland, College Park,
MD, USA in 2021. His research focus is hardware
security, including physical unclonable functions,
security in emerging fabrication technologies, logic
locking, and the security of machine learning hard-
ware.

Ankur Srivastava (S’00, M’02, SM’15, F’23) Dr.
Srivastava received his B.Tech in Electrical Engi-
neering from Indian Institute of Technology Delhi
in 1998 and PhD in Computer Science from UCLA
in 2002. He was awarded the prestigious Outstand-
ing Dissertation Award from the CS department of
UCLA in 2002. His primary research interests lie
in the field of high performance, low power and
secure electronic systems and applications such as
computer vision, data and storage centers and sensor
networks. He has published numerous papers on

these topics at prestigious venues. He has been a part of the technical
program & organizing committees of several conferences such as ICCAD,
DAC, ISPD, ICCD, GLSVLSI, HOST, and others. He has served as the
associate editor for IEEE Transactions on VLSI, IEEE Transactions on CAD
and INTEGRATION: VLSI Journal. His research and teaching contributions
have also been recognized through various awards.

