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Abstract—Logic locking techniques have been proposed to
protect chip designs from malicious reverse engineering and
overproduction. Stripped functionality logic locking (SFLL) has
gained substantial traction as a current state of the art method,
exhibiting strong resilience against a wide variety of attacks.
However, secure instances of SFLL-based locking tend to have
high power and area overheads, particularly in its restore units.
This work presents a novel architectural approach to restore
unit configuration for SFLL-like logic locking methods that treats
restore units as an overhead-constrained shareable resource. We
describe how resource contention caused by sharing of restore
units imposes constraints on the underlying locking scheme from
a graph theoretic perspective and propose both a 0-1 ILP and
a heuristic clustering algorithm for finding resource-constrained
shared locking configurations that satisfy these constraints. We
evaluate our sharing method on SFLL-flex and find that our ILP
and heuristic methods were each able to achieve a 55% and 31%
reduction in power used by locked datapaths synthesized from
MediaBench benchmarks while maintaining the same security
and functionality compared to datapaths locked with conventional
gate-level techniques.

Index Terms—logic locking, hardware obfuscation, SFLL, re-
source sharing

I. INTRODUCTION

The high capital cost of silicon chip design, especially at
the latest process technologies, has forced most design houses
to contract chip fabrication and packaging out to third-party
foundries. With so many steps in the chain controlled by
third parties, potentially across the world, chips with novel
designs and secure applications may be at risk of counterfeiting,
overproduction, and reverse engineering [1].

To thwart these supply chain attacks, logic locking tech-
niques were developed to protect chips from attack by ob-
scuring select combinational modules within a chip from third
parties via a key mechanism [2]–[10]. Manufactured chips that
implement logic locking are not fully functional unless the
correct key is loaded onto the locked chip by the IP designer.
Unauthorized copies without a correct key will function in-
correctly, preventing their misuse. A survey of logic locking
research can be found in [11], [12].

Among the most prominent class of logic locking techniques
are those based on stripped functionality logic locking, or SFLL
[2]–[4]. SFLL locks a module by replacing it with a stripped
module that only partially implements the functionality of the
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original. To restore stripped behavior, additional reconfigurable
circuitry (called the restore unit) is added that reimplements
correct functionality when provided a correct key.

SFLL [2]–[4] is provably secure against state-of-the-art at-
tacks such as SAT [13], [14], removal [15], [16], and structural
[17] attacks. Additionally, SFLL is highly configurable to meet
security and application requirements for a wide range of
designs [18] and has been implemented and validated in several
real-world designs [19].

Our proposal augments SFLL by taking an architectural ap-
proach to locking a design. Instead of considering each locked
functional module in isolation when making locking decisions,
we show that restore units can be shared across multiple locked
modules, enabling a locking scope that expands beyond gate
level boundaries. While a high level approach to logic locking
is not unique [20]–[24], this work is the first to explore utilizing
restore units as a shareable architectural resource that can be
bound to multiple locked modules in a design. This high level
view affords the designer significant flexibility in reducing area
and power overheads as well as allowing for a mathematically
rigorous and tunable optimization scheme that gives granular
control over the error-overhead trade-off to the engineer.

A. Contributions

In this work, we utilize our architectural view of logic
locking to explore a novel use-case. Namely, treating restore
units as a shared resource for overhead reduction. We present
two mathematically-rigorous methods to explore sharing. Both
methods come with tunable gate-level SAT attack resilience
and guarantee that all stripped functionality will be properly
restored given the correct key. Our contributions are summa-
rized as follows:

1) We define a formal mathematical model for restore unit
sharing in the form of a 0-1 integer linear program
(ILP). Our formulation finds solutions that meet resource
contention, attack resilience, and overhead constraints
while also optimally maximizing system-level locking-
injected errors.

2) We present and mathematically formalize an equivalent
graph-theoretic model that we build into a hierarchical
clustering heuristic algorithm that satisfies the same con-
straints as the ILP and finds solutions in polynomial time
in exchange for sub-optimal error injection profiles.
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Figure 1: The general structure of SFLL locking techniques.

3) We empirically evaluate our methods on MediaBench
benchmark circuits locked with SFLL-flex [2], and find
that our ILP method on average yields a 55% power and
6% area reduction while maintaining the same locking
efficacy as a locking architecture without sharing restore
units. Similarly, our P-time heuristic achieves a 31% and
4% reduction in power and area overhead respectively.

II. PRELIMINARIES

A. Attacker Model

The logic locking attacker model we consider is a common
model used by recent works in logic locking [2]–[5], [13], [14],
[20], [25]. We assume an adversary with access to

1) a locked module’s netlists, obtainable via reverse engi-
neering the locked chip’s layout

2) an black-box oracle chip with scan-chain access that
the attacker can query with inputs and read out correct
outputs

The goal of this attacker is to find a key value that produces a
fully functional chip.

Logic locking methods are subject to powerful Boolean
satisfiability-based attacks (SAT attacks) [14]. The SAT attack
finds a key value for the locked module that results in an input-
output mapping identical to the oracle. SAT attacks convert the
locked module into a Boolean expression that returns TRUE if
the module’s input and key value yields a value that matches the
oracle’s output. The attack then iteratively prunes away wrong
key values by finding inputs that give different outputs from the
oracle until no such inputs can be found. The resulting final key
will be functionally equivalent to the correct key.

B. SFLL

SFLL [2]–[4] is one of the leading logic locking techniques
resistant to SAT attacks. At its core is the idea of functionality
stripping; altering the output of a locked module only when
certain inputs are applied. The general structure of a module
locked with SFLL is shown in Fig. 1. The original module is
replaced with a stripped module which removes the functional-
ity of selected protected input patterns (PIPs) from the original
design. Stripped functionality is restored by adding a restore
unit alongside the stripped module. The restore unit corrects
incorrect outputs produced by the stripped module provided
the PIPs used in the corrupting unit are supplied as key inputs
to the restore unit.

By changing the number of PIPs, the rate of wrong key
errors can be adjusted, allowing the designer to tune SFLL’s
construction to the design’s target wrong-key error rate. How-
ever, inherent to this tunability is a direct inverse relationship
between the number of PIPs and the expected time needed to
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Figure 2: Relationships between number of PIPs, PIP width,
average error rate, and SAT iterations derived in [26] for a
locked module with 64 bit inputs. Increasing the average error
rate by either of these two methods always leads to a decrease
in SAT attack resilience.

clock 1 2 3 4 5 6
Module 1 ⟨15⟩ ⟨22⟩ ⟨22⟩ ⟨35⟩ ⟨41⟩
Module 2 ⟨22⟩ ⟨22⟩ ⟨35⟩ ⟨35⟩ ⟨15⟩ ⟨35⟩

Figure 3: Two functional modules and a system input trace of
the two modules for a single operation.

reverse engineer the key by SAT attack [26], [27], thus forcing
the designer to choose between a high level of wrong-key error
and good resilience against SAT. Selecting PIPs that occur more
frequently in system traces can somewhat lessen the tradeoff
[20]. Fig. 2 shows the expected number of SAT queries required
for a locked module with 64 bit inputs for both varying numbers
of 64-bit PIPs and varying PIP widths.

III. WHY SHARE?
Conventional locking approaches decide what functionality

to strip on a module-by-module basis after the overall RTL
(or even gate level) architecture has been fixed. Subsequently,
every locked module has its own dedicated restore unit. Since
restore units are generally implemented as comparators, each
locked module will contribute a significant amount of addi-
tional power and area. Sharing the comparator across multiple
functional modules reduces the design overhead incurred by
restore units. Additionally, restore units function independently
from the specific stripping method used, so sharing them allows
the designer to consider overhead and error relevant locking
decisions at an architectural level, allowing greater flexibility
on where to balance a design’s overhead against its security.
To illustrate how our method compares to the conventional
module-level approach to restore units, we demonstrate how
our method can be used to lock a small two module example
design using a trace. For this example we assume a constrained
overhead budget that only allows for the one restore unit, and
only one PIP is used to strip a locked module. Additionally,
the designer has access to traces fully describing all candidate
PIPs that can be used for locking.

A. Conventional Module-level Locking

An example of a conventional restore unit restoring just one
stripped module is shown in Fig. 4a. Note that only module 2
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(a) Non-shared restore unit.
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(b) Shared restore unit.

Figure 4: Two 2-module locked datapaths. 4a is locked with
a conventional approach, while 4b is locked with our sharing
approach. Locked modules are shown in orange and each strip
two PIPs.

is locked; the restore unit needed for locking module 1 would
require additional overhead. The simplest locking policy would
be to randomly choose one input pattern from all possible PIPs
to be the PIP for each locked module. However, to differentiate
between different PIP selections, we can use the trace to choose
a PIP that occurs more often in order to inject more output error.
Increasing an individual functional module’s error rate in this
way results in more errors propagated to the rest of a system,
therefore decreasing the functional utility of a locked chip for a
malicious user. For the example trace shown in Fig. 3, locking
module 2 with ⟨35⟩ as the PIP will create the highest amount
of error (three total, at clocks 3, 4, and 6) with the overhead
constraint of one locked module.

B. Locking with a Shared Restore Unit

By sharing a restore unit, we can amortize the area and
power cost of the comparators in each restore unit over multiple
stripped modules. An example of a shared restore unit restoring
two locked modules is shown in Fig. 4b. The shared restore
unit has the same function as before: compare an input with a
set of key inputs, and send a restoration signal if any match.
A significant difference is that only one of the two stripped
modules can be restored in any clock cycle, which will impose
restrictions for the PIPs selected to lock each module.

Which module to examine and which set of key values to
use at each clock is controlled by a set of MUXes. On clocks in
the trace where PIPs may potentially occur, the controller will
direct the restore unit to the locked module where it can occur.
On clocks where no module recieves a PIP, the controller can
direct the restore unit to the corresponding locked module.

To illustrate the restrictions shared restore units impose, let
us examine the system trace in Fig. 3 and choose the most
common input for each module to be its respective PIP: ⟨22⟩
for module 1 and ⟨35⟩ for module 2. In the first clock, neither
module receives a PIP as an input, so the controller can have
the comparator examine either module without affecting system
functionality for correct keys. In the second clock, module 1
receives its PIP ⟨22⟩ as an input and therefore the output will
need to be restored, while module 2 can operate as-is since
⟨22⟩ is not a PIP for module 2, only module 1. Therefore, the

Table I: Variables and constants used in the ILP formulation

Notation Definition

s Total number of allocated shared restore units
r Total number of unique input patterns
u Number of functional modules
T Number of clock cycles in the trace
cj Maximum number of PIPs allowed for functional module j

di,j,k Encodes trace information. di,j,k is 1 if the ith candidate minterm
is an input to functional unit j at clock cycle k in the trace, and
is 0 otherwise

xi,j Variable that encodes locked minterm assignments to functional
units. xi,j is 1 if the ith candidate minterm is a locked minterm
for functional unit j, and is 0 otherwise

aj,l Variable that encodes functional unit assignments to restore units.
aj,l is 1 if functional unit j is restored by restore unit l, and is 0
otherwise

hi,j,k,l Variable associated with locked input minterms in the trace.
hi,j,k,l is 1 if the following hold: 1) minterm i is used to lock
module j 2) module j is restored by restore unit l and 3) minterm
i is an input minterm for module j at clock cycle k in the trace,
0 otherwise. Highly sparse.

controller should direct the restore unit to examine module 1’s
input and restore if needed.

In the third clock, both modules receive PIPs as inputs, so
both module outputs will need to be restored. However, the
multiplexer can only choose one module per clock, leading
to resource contention. Both locked modules require exclusive
use of a resource—the restore unit—at the same clock, but the
controller only has one restore unit available to allocate, so
the corrupted output of one of the modules will go unrestored,
independent of whether or not the key inputs are correct.

To avoid resource contention in an overhead constrained
design, we can instead pick PIPs that never cause resource
contention given a set of comprehensive traces. For this exam-
ple, if we instead lock module 1 with ⟨15⟩ and module 2 with
⟨35⟩, then only one module needs to be restored at any clock
in the trace, and therefore no resource contention occurs. This
contention-free PIP selection causes error in clock cycles 1, 3,
4, and 6, for a total of four injected errors, an improvement
over the three errors injected with an unshared restore unit.

This approach—choosing PIPs that never cause resource
contention in a trace—is the approach we take for sharing
restore units. Our methods find locking configurations that meet
contention avoidance, resource budget and attack resilience
constraints while optimizing for high levels of injected error.

IV. ERROR-OPTIMAL SHARING VIA ILP

The problem of finding error optimal restore unit bindings
and PIPs can be described as a 0-1 ILP. To make our formu-
lation easy to follow, Table I lists all constants and variables
used, along with their definitions.

We begin with the constraints. First, each stripped module
should lock just enough minterms to be sufficiently robust
against expected SAT attacks [26], [27]. This can be expressed
as the following constraint:

r∑
i=1

xi,j ≤ cj , ∀j ∈ [1, u] (1)



To keep MUX overhead low, stripped modules can only
by restored by one shared restore unit. Therefore, a stripped
functional unit with locked minterms can only be restored by
exactly one restore unit. We use the following inequalities to
describe these two requirements:

xi,j ≤
s∑

l=1

aj,l ≤ 1, ∀i ∈ [1, r], j ∈ [1, u], (2)

To ensure PIP assignments decided by xi,j do not cause
contention over restore units configured by aj,l, i.e. the sets
of locked minterms belonging to different functional modules
unlocked by the same restore unit should never occur in the
same clock, we use inequality (3) to calculate which input
patterns i in the trace are PIPs for a given restore unit l and
locked module u at clock cycle k in the trace. Inequality (4)
constrains the number of restored modules per restore unit per
clock to be at most one, otherwise contention occurs.

aj,lxi,jdi,j,k ≤ hi,j,k,l ∀i, j, k, l (3)

r∑
i=1

u∑
j=1

hi,j,k,l ≤ 1 ∀k ∈ [1, T ], l ∈ [1, s] (4)

Note that inequality (3) is not linear. However, the decision
variables xi,j and aj,l are constrained to be binary, and d is a
constant value representing the trace. Therefore, the quadratic
constraint inequality (3) can be rewritten as an equivalent
set of linear inequalities by adding an additional variable.
Additionally, note that if di,j,k is 0 for some value of (i, j, k)
(which is most values of (i, j, k)), then the corresponding
constraint is redundant and can be removed, greatly reducing
the number of constraints and additional h variables needed.
The resulting linear expressions are

aj,l + xi,j − 1 ≤ hi,j,k,l

hi,j,k,l ≤ aj,l
hi,j,k,l ≤ xi,j

 ∀(i, j, k) ∈ {i, j, k|di,j,k = 1}
∀l ∈ [1, s]

(5)

The optimization objective is to maximize the number of
corrupted outputs in the trace caused by PIPs:

max
a,x,h,g

u∑
j=1

r∑
i=1

bi,jxi,j (6)

subject to inequalities (1) to (3) and (5).
Feasible solutions to this ILP represent the set of valid

locking configurations which do not cause resource contention
and respect overhead and SAT attack resilience requirements.
Optimal solutions are locking configurations that maximize
injected errors in the trace used to configure locking.

A. ILP Usage

A designer seeking to secure a design within locking-induced
overhead and security constraints while maximizing locking’s
impact on the functionality of a locked design using shared
restore units would need to determine what functional modules
should be locked, the number of PIPs each locked module
should have, and the number of restore units that can be

allocated from the design’s power budget. Additionally, a set
of traces that fully describe all conflicts between each module’s
prospective PIPs will be needed.

These values can then be encoded into our ILP formulation
as described previously and solutions found using one of the
many available ILP solvers. Optimal values of x, a, and h
can then be used to set PIP assignments, configure restore unit
MUXes, and program controller behavior respectively.

V. EFFICIENT SHARING VIA GRAPHS

While in practice ILP solvers can efficiently solve some large
instances of integer LPs, the worst-case runtime is still NP-
complete. To provide an alternative to avoid such worst-case
time complexity, we present a graph theoretic model for sharing
in this section that will be used as a foundation for our heuristic
algorithm in section VI.

A. Locking and Sharing Configurations with the PIP Compat-
ibility Graph

We define entries in the trace as three dimensional vectors
of the form (i, j, k), i ∈ [1, r], j ∈ [1, u], k ∈ [1, T ]. Variables
are defined the same as our ILP (e.g. i represents a specific
input pattern, u represents the number of lockable modules,
etc). We represent the entire trace and its entries as a set of
these three dimensional vectors. We define a PIP assignment as
a two dimensional vector of the form (i, j), i ∈ [1, r], j ∈ [1, u]
and represents the decision of stripping minterm i from module
j.

We use the term PIP compatibility to refer to whether or not
a pair of PIP assignments to two different locked modules will
cause restore unit contention if a restore unit is shared between
the two modules. It is defined as follows:

Definition V.1 (Incompatible and Compatible PIPs). Two PIP
assignments v1 = (i1, j1), v2 = (i2, j2) where i1, i2 ∈ [1, r]
and j1, j2 ∈ [1, u], j1 ̸= j2 are incompatible if (i1, j1, k) and
(i2, j2, k) are both in the trace for some k ∈ [1, T ]. A pair
of PIP assignments v1, v2 that do not satisfy this property are
compatible.

We can use this definition to build the multipartite PIP
compatibility graph GP (VP , Ep, w). GP represents all pairs of
compatible stripping decisions between modules in the design.
The set of nodes VP = VP1 ∪ VP2 ∪ ... ∪ VPu consist of two
dimensional PIP assignment vectors (i, j) ∈ VPj , i ∈ R, j ∈ U
where each partition VPj

contains all potential PIP assign-
ments that strip module j. An edge exists between two nodes
(v1, v2) ∈ EP if v1, v2 are compatible as defined previously.
The node weight function w : VP → N weights each PIP
assignment (i, j) ∈ VP by how often input pattern i occurs as
an input to functional module j in the trace. The set of PIPs
chosen to strip locked modules can then be defined as a subset
S ⊆ VP of all possible PIP assignments.

Similarly to PIP assignments, we define a restore unit re-
source assignment to be a two dimensional vector (j, l) ∈
W, j ∈ [1, u], l ∈ [1, s] that represents the decision of having
functional module j be restored by restore unit l.



We denote W as the set containing our chosen module-to-
restore unit mapping vectors (j, l) for an entire design. To keep
area overhead caused by MUXes low, each locked module can
only be restored by exactly one restore unit. Formally, we can
define this constraint as follows: we first define Wl to be the
set of locked modules restored by restore unit l

Wl := {j ∈ U |(j, l) ∈W} (7)

then for two different restore units lx and ly ,

Wlx ∩Wly = ∅ (8)

must hold.
We can now define a locking configuration (S,W ) as a

structure containing both a set of PIP stripping decisions S and
a sharing configuration W . Now we can define a contention-
free locking configuration. First, we define Sl as the set of PIP
assignments restored by restore unit l:

Sl := {(i, j) ∈ S|(j, l) ∈W} (9)

We can formally define a contention-free locking configuration
by using the PIP compatibility graph GP defined earlier:

if (s1, s2) ∈ EP

∀s1, s2 ∈ Sl, s1 ∈ VPi, s2 ∈ VPj , i ̸= j, i, j ∈Wl

∀l ∈ [1, s],

then (S,W ) will not cause resource contention.
Note that this definition of a contention-free locking configu-

ration is equivalent to the definition of a set of partition disjoint
(from equation 8) multipartite cliquess on GP . Therefore it can
be shown that a set of multipartite cliques, each containing
members from disjoint partitions of GP , represents a locking
configuration that never causes contention in the trace. From
here, we can define a graph problem equivalent to the ILP:

argmax
S

∑
s∈S

w(s) (10)

subject to

|{(i, x) ∈ S|x = j}| ≤ cj (11)

and (S,W ) being contention-free as defined before.
Finding a locking configuration (S,W ) that meets these

constraints while maximizing corrupted outputs can be seen as
finding a maximum weight set of multipartite cliques on GP

with constraints on the number of cliques and cardinality of
each clique. Like the ILP described previously, no polynomial
time algorithm for finding such cliques is known. The rest
of this section will be describe our heuristic algorithm which
trades output corruption optimality for a polynomial algorithm
runtime.

VI. TOWARDS A HEURISTIC ALGORITHM

We propose a method based on hierarchical agglomerative
clustering to find locking solutions that meet our other stated
objectives of no contention, high corruptability, low overhead,
and attack resilience in polynomial time at the expense of
a suboptimal number of corrupted outputs. We start with
introducing a special case of the optimization problem defined
in section V-A—the two-module sharing problem—and show
that optimal solutions to this special case can be found in
polynomial time. We then use these two-module solutions to
initialize our hierarchical clustering heuristic algorithm.

A. The Two Module Problem

The two module problem considers the specific case of two
functional modules sharing a single restore unit, and is needed
in the initialization step of our heuristic. We relax inequality (1)
for the two-module case; guaranteeing attack resilience by
limiting the number of PIPs per module will be performed later.

The PIP compatibility graph for two modules is a node-
weighted bipartite graph GP (VP1, VP2, EP , w). Finding a
contention-free locking configuration S with maximum out-
put corruption reduces to finding a maximum node-weighted
biclique in GP :

argmax
S

∑
s∈S

w(s) (12)

subject to S ⊆ VP1 ∪ VP2

{v1, v2} ∈ EP ∀v1 ∈ VP1 ∩ S, v2 ∈ VP2 ∩ S

Fortunately, this problem has been shown to be optimally
solvable in polynomial time by converting (12) into an equiv-
alent 0-1 integer linear program and solving its LP relaxation
[28].

B. Hierarchical Clustering Heuristic

Our algorithm uses a graph-based data structure
GR(VR, ER, a, A) to store its state. GR is a complete
graph of restore units, where each node represents an allocated
restore unit and each edge represents a decision to merge two
restore units into one. Each node in VR and edge in ER has
an associated set of PIP assignments stored as node and edge
attributes in a and A respectively. The set of node attributes a
keeps track of the current locking configuration solution state,
while each edge attribute in A represents a potential decision
to merge two restore units together the outcome of clustering
the two restore units at each edge’s endpoints.

The full algorithm is shown in Alg. 1. The algorithm first
initializes GR’s nodes to represent a conventional locking
configuration where every module has its own dedicated restore
unit (line 1). Each node attribute contains PIP assignments
that locks every possible PIP for the node’s module (line 2).
Every edge attribute is initialized to the two module solution
introduced in the previous section (line 3).

The clustering step first chooses the pair of nodes i′, j′ ∈ VR

whose merger yields the greatest increase in overall corrupted
outputs (line 5). We perform the merger by updating the graph
in-place: stripping decisions stored in the edge between i′ and
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Figure 5: Breakdown of how restore unit power and total injected error is affected by changes in the number of restore units
allocated for sharing. All axes are normalized to a design that locks every module with a dedicated (i.e. non-shared) restore unit.
Note that low restore unit allocations resulted in no feasible solutions for some benchmarks.

Algorithm 1 Hierarchical clustering algorithm

Input: GP (VP , EP , w), slimit, c in
Output: GR(VR, ER, a, A) out

GR Initialisation :
1: VR ← {1, 2, ..., u}, ER is complete
2: ai ← VPi ∀i = 1...u
3: Ai,j ← 2 module sol. for modules i, j ∀{i, j} ∈ ER

Iterative Clustering:
4: while |VR| > slimit do
5: i′, j′ ← argmax

{i,j}∈ER

(
∑

s∈Ai,j

w(s)−
∑
s∈ai

w(s)−
∑
s∈aj

w(s))

6: ai ← Ai′,j′

7: for k ∈ VR, k ̸= i′, j′ do
8: Ai′,k ← (Ai′,j∩Ai′,k)∪(Ai′,j∩Aj′,k)∪(Ai′,k∩Aj′,k)
9: end for

10: VR ← VR \ j′ and assoc. entries in GR

11: end while
12: for each module j restored by each RU in GR do
13: select top-cj most frequently occurring minterms as PIPs

for module j
14: end for

j′ are copied to node i′ (line 6). After that, edge attributes
containing future possible merges between the just-merged
node and all other nodes are updated. It can be shown that the
set operation on line 8 preserves PIP compatibility within each
restore unit. An additional check can be added here to remove
edges with configurations that do not strip functionality from
every module covered by restore units at each edge endpoint.
Finally, as a post-processing step, PIP assignments with low
weight in GP are removed until each locked module j only
strips cj input patterns (lines 12 to 14).

The GR initialization step runs an instance of the LP
relaxation of eq. (12) for every pair of modules in the design,
for a complexity of O(LP (r)u2), where LP (r) is the runtime
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Figure 6: Locked datapath area and power for benchmarks
tested, normalized to single-PIP unshared restore units. The
lowest power and area achieved with the same total system
error as the conventional no-sharing approach are shown here.

complexity of solving a LP with r variables. The iterative
clustering step evaluates a linear expression for every edge in
ER and performs O(s) set intersection and union operations.
This step runs up to s−1 times, so the clustering portion runs in
O(s4). Finally, selecting the cj most common input patterns in
each locked module runs in O(rlogr). Therefore, our heuristic
runs in O(LP (r)u2 + s4 + rlogr), a P-time solution.

VII. RESULTS

To evaluate our resource sharing approach to logic locking,
we used datapaths synthesized from C functions extracted from
the MediaBench suite [29]. The DFG of each function was
extracted using SUIF and was scheduled with a path-based



scheduler [30]. An allocation of up to three adders and three
multipliers was used, and each functional unit was bound using
a security-aware binding algorithm [20]. We used test inputs
supplied by Mediabench to generate input traces that represent
typical use scenarios. Traces were generated by simulating the
DFG with test inputs.

Stripped modules were protected with SFLL-flex, although
any stripping method that relies on restore units could have
been used. To maximize security against SAT attack, every
locked module is allocated only one PIP (i.e. cj = 1∀j). We
compared our optimal and heuristic formulations to a error-
maximum locking solution that does not share restore units.

We used Gurobi [31] as the ILP solver and NetworkX
[32] to implement the graph heuristic algorithm. We used the
constraint set from the ILP to verify that the heuristic algorithm
returns a feasible and valid solution. All experiments were
performed with a standard desktop computer equipped with an
AMD Ryzen 3.4 GHz processor and 32GB of system memory.
Scripts to implement and manage the solvers were written with
Python and run under Linux. Power and area overhead numbers
were calculated using designs built using FreePDK45 [33] and
synthesized with Cadence Genus.

In order to compare our techniques against the conven-
tional no-sharing approach, Fig. 6 shows how power and area
overhead used by restore units is reduced by our heuristic
algorithm and ILP formulation while maintaining the same
number of injected errors. Data shown are normalized by the
area and power consumed by the same datapath locked with a
conventional error-maximizing approach. Our heuristic found
locking solutions that reduced locking-induced power and area
overhead by 31% and 4% relative to the conventional approach
in most benchmarks, while our optimal ILP solution was able to
save 55% and 6% power and area overhead in all benchmarks.
Area savings were less significant due to the additional MUXes
needed to switch between restore units. Since the restore units
do not lie on a critical timing path, no design experienced any
change in their timing under any locking scenario.

While both of our methods do not explicitly consider area
and power, the clustering heuristic consistently shows reduced
area and power savings compared to ILP-derived sharing
configurations. Close examination of the sharing configuration
solutions derived from each method shows that ILP optimal
sharing configurations tend to favor an unbalanced distribution
of restore units to functional modules, where one restore unit
restores a large set of functional modules and the rest of the
restore units each only restore a single module. On the other
hand, the heuristic tends to favor a more balanced distribution,
where the restoration of modules is evenly divided among the
available restore units. This results in more MUXes over the
ILP, and therefore a greater area and power overhead.

We can further break down the results by examining how
power and total injected errors change with different restore
unit resource allocations in Fig. 5. Resource allocations range
from allocating one restore unit for each functional module to
allocating just one restore unit for all functional modules. Note
that allocating a restore unit to each functional module will

yield a solution that is identical to the conventional approach,
and is reflected in our graphs. From Fig. 5 we can observe
that as allocations decrease, the number of injected errors
does not decrease until allocations start to approach 1. The
heuristic tends to drop in error sooner than the optimal solution
for some benchmarks. Meanwhile, overhead trends roughly
linearly with resource allocations. We can see that there is
significant power overhead margin that can be reclaimed by
efficiently sharing restore units at the architectural level while
maintaining the same error severity. This tunability can enable
the designer greater control on the overall system, allocating
more resources towards security features and meeting area and
power constraints.

VIII. CONCLUSION

In this work we present a resource sharing methodology
for restore units used by SFLL-based locking techniques.
Our method decreases design overhead when compared to a
standard non-shared locking configuration at the same level
of injected error while meeting SAT resilience requirements.
We model resource-contention free resource sharing as a 0-1
integer linear program, and present a polynomial time heuristic
algorithm based on hierarchical clustering to find good feasible
solutions. We apply the technique on sample traces for synthe-
sized functions from the MediaBench [29] suite of benchmarks
and compare overhead reductions for the optimal ILP solution,
the heuristic solution, and error-maximal non-shared minterm
selection algorithm. Our optimal and heuristic formulation
reduces total power consumed by a locked design 55% and
31% respectively when compared against an equivalent locking
construction without shared restoration hardware.
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