
StatSAT: A Boolean Satisfiability based Attack on Logic-Locked
Probabilistic Circuits

Ankit Mondal, Michael Zuzak and Ankur Srivastava
Department of Electrical and Computer Engineering

University of Maryland College Park, Maryland 20742, USA
Email: amondal2@terpmail.umd.edu

Abstract—The outsourcing of chip designs for fabrication has raised
concerns regarding the protection of Intellectual Property (IP) from an
untrustworthy foundry. Logic locking is a design-for-security technique that
has the potential to thwart attacks from such an adversary. On the other
hand, the notions of approximate and probabilistic computing have been
popularized due to their low energy consumption characteristics and their
potential application in error-tolerant frameworks. Prior work has looked
into and exposed the vulnerability of logic-locked circuits using concepts of
Boolean Satisfiability (SAT), but mostly from the perspective of deterministic
designs. Despite existing attack frameworks not being directly applicable, we
show in this work that circuits exhibiting probabilistic behavior also face
the same threat. We propose StatSAT, an attack methodology incorporating
statistical techniques into the existing SAT attack, that can overcome the
hurdles imposed by the probabilistic behavior. Our attack results show that
the adversary is capable of unlocking the circuit to an extent good for all
practical purposes.

I. INTRODUCTION

The security of hardware designs has gained attention with the
possibility of adversaries in the IC supply chain [1]. With the outsourcing
of chip fabrication to offshore foundries becoming common, IC designers
are increasingly interested in protecting the IP of their design from
attackers in the fabrication unit. Manufactured circuits released into
the market may be subject to reverse engineering (RE) with the intent
of stealing sensitive information, and a foundry-based adversary may
overproduce the design and sell illegal copies in the black market [2].

Logic locking (aka logic obfuscation) is a technique that aims to
obfuscate the functionality of a design by adding additional logic gates
and inputs (called keys) to its circuit [3, 4]. The circuit behaves correctly
only when the correct key input is provided to it, otherwise it produces
wrong outputs for certain primary inputs. Such a protection mechanism is
expected to hide the original functionality of the design from an untrusted
foundry and also prevent it from illegally overproducing the IC. The key
input bits are stored in a tamper-proof memory after fabrication which
is inaccessible to an attacker [5].

Early on, several works [6, 7] proposed different methods of per-
forming logic locking to increase resilience against fault-sensitization
and justification based attacks using automatic test pattern generation
tools. More recently, attacks [8, 9] that leverage boolean satisfiability
(SAT) to find the correct key have prompted researchers to investigate
further into this field, leading to a flurry of defense techniques.

Relaxing the stringent requirements of functional correctness of
circuits reduces the cost of manufacturing, verification and test [10].
Additionally, the energy benefits of such trade-offs have brought the
concept of approximate and probabilistic/imprecise computing into the
limelight. The rising popularity of big-data, Internet-of-Things and
machine learning-based applications have widened the scope of such
approximate computations owing to their error-tolerant nature [11].

The uncertainties of IC design at highly scaled-down technology nodes
often lead to probabilistic behavior. This is due to a variety of factors,
including reduced noise margin because of voltage scaling, which is an
effective way to reduce the energy consumption of circuits, and larger
process variations [10]. The errors arising from the use of probabilistic
computing elements are dynamic and transient in nature [12, 13]. They
have a certain probability of occurring and can occur anywhere in the
circuit. Such non-deterministic deviation of a system’s behavior from its
specifications falls under probabilistic design/computing. Also, several

non-CMOS emerging devices exhibit stochastic properties that can be
exploited for realizing probabilistic systems [14].

In this work, we demonstrate how it is possible for an untrusted
foundry to steal the IP of probabilistic chips potentially employed
in systems wherein approximate/probabilistic computing is a sought-
after framework. We develop an attack strategy based on Boolean
Satisfiability (SAT) to find the key when such a circuit is logic-locked.
The existing SAT attack [8, 9] is good for deterministic circuits but
not for probabilistic ones, since the latter exhibits inconsistent behavior
which can be detrimental to the progress of the attack. The work in
[15] proposes a Probabilistic SAT (PSAT) attack to handle the situation.
However its success is limited to low error rates and its scalability with
the no. of circuit outputs tends to be poor. In this paper, we propose
StatSAT, an attack that is applicable to circuits having higher error than
what was considered by PSAT. Our contributions can be summarized as
follows:
• We explain why and how our attack should differ from the Standard

SAT attack when building the SAT solver’s problem formulation.
• We propose statistical schemes for developing the SAT formulation

to deal with the probabilistic behavior of the circuit. This includes a
technique to model the error within the circuit during the progress of
the attack.

• When the above techniques aren’t sufficient to unlock the chip, we
show how multiple SAT formulations can be used simultaneously to
ensure the progress of the attack.

• We present attack results on standard benchmark circuits and demon-
strate that it is possible for an attacker to recover at least a good
enough key for unlocking the circuit in a feasible amount of time. We
also make comparisons with PSAT and show that StatSAT produces
better attack results.

Overall, this paper exposes the vulnerability of fault-tolerant chips to IP
theft; their probabilistic behavior isn’t much of a hurdle for an adversary.

II. BACKGROUND AND RELATED WORK

A. Logic Locking

Logic locking is a design-for-security technique for protecting IP
from adversaries based in an untrusted foundry, and not only from a
malicious end-user [3]. It involves adding extra gates and inputs (keys)
to the original netlist of a circuit to make it secure [6, 7]. This locked
netlist would provide the desired functionality only if the correct key
value, which is known to the IC designer, is loaded into the circuit. The
untrusted foundry, although in possession of the locked netlist, does not
possess the secret key to unlock the circuit. It thus cannot decipher the IP
of the circuit and overproduce the chip (since the original functionality
would be restored only with the correct key).

B. The SAT attack

The field of logic locking received a new lease of life when the concept
of Boolean Satisfiability (SAT) was used to find the correct key [8, 9, 16].
Threat model: The SAT-based attack considers an attacker based in the
foundry and requires them to have access to only
• The netlist of the locked circuit obtained through RE of the layout
• An activated/unlocked version of the chip (called the ‘oracle’) pur-

chased from the open market which can be used as a black box.

The SAT attack essentially involves iteratively pruning the wrong keys
with the help of the oracle. It finds in each iteration, using a SAT solver,
an input pattern that can eliminate one or more wrong keys. The attack
terminates when only the correct key K∗ (and other equivalent keys1,
if any) remains in the search space.

Let us adopt the following notations for describing the attack:

• CL(X,K) - The response of the locked circuit with primary and key
inputs X and K respectively.

• CO(X) - The correct output for input X obtained from the oracle.

The attack methodology is described next (illustrated in fig. 1).

• In the first iteration, a SAT solver is used to obtain an input X1 which
can produce different outputs (say Y 1

a and Y 1
b) with 2 different keys

(say K1
a and K1

b respectively). Since this input X1 has the capability
to distinguish between 2 keys, it is called a distinguishing input (DI).

• The same input X1 is fed to the oracle to obtain its correct output
Y 1, i.e. CO(X1) = Y 1. Then, (X1, Y 1), which is known as a
distinguishing input-output pair (DIP), is stored in the Conjunctive
Normal Form (CNF) SAT formula of the locked circuit as a constraint
to be satisfied in the future. The rationale behind obtaining the DI
is that since it produces 2 different outputs (at most one of which
can be correct) with 2 keys, it has the potential to eliminate at least
one of those 2 keys and also all other keys which do not satisfy the
corresponding I/O pair (X1, Y 1).

• The mth iteration of the attack produces a DI, say Xm, which again
gives different outputs with 2 keys Km

a and Km
b . However, these keys

have to be such that they satisfy all the previously obtained I/O pairs.
That means CL(Xi,Km

a) = Y i = CL(X
i,Km

b) ∀ i = 1 . . . (m−1).
Fig. 1 depicts the mth iteration of the attack wherein DI Xm and
distinguishing keys Km

a and Km
b have been found.

• This continues until the SAT solver is no longer able to find a DI,
which means that all wrong keys have been eliminated with the
previously found I/O pairs. At this point, the solver is asked to provide
one key which satisfies all those DIPs, which is the correct key K∗

for that locked netlist. This key satisfies CL(X,K∗) = CO(X) ∀ X
in the input space.

CL

CL

𝑋
1

𝑌
1

CL

CL

𝑋
𝑚−1

𝑌
𝑚−1

CL

CL

𝑋
𝑚

𝑌 𝑚
𝑎

𝑌 𝑚

𝑏

𝐾𝑚
𝑎

𝐾𝑚

𝑏

Fig. 1: The SAT attack. The green and yellow rectangles denote the CNF
SAT formulas for 2 keys producing different outputs. By the mth iteration,
both of them have been fed with the constraint of satisfying the first (m−1)
I/O pairs. The mth iteration produces (i) 2 keys which satisfy those pairs,
and (ii) the DI Xm.

To counter the powerful SAT attack, several SAT-resilient techniques
[17, 18] came up subsequently. They usually aimed for increasing the
size of the distinguishing I/O set exponentially, thereby increasing the
time complexity of the SAT attack. However, these defense mechanisms
have also been subject to specialized attacks that seek to exploit their
characteristics. Examples of such attacks include recovery of an approx-
imate key [19], removal attack [20] and bypass attack [21]. Another way
of making the SAT attack complex is to increase the time required per
iteration by using SAT-hard instances, as was done in [22]. The cat and
mouse game thus continues in this field, with the state-of-the-art locking
techniques being Stripped Functionality Logic Locking (SFLL) [23, 24]
and Full-Lock [22]. Several structural attacks [20, 25, 26, 27] have also
been proposed that do not assume oracle access.

1Two keys are said to be equivalent if they induce the same overall logic function
on the locked circuit

C. Probabilistic Computing

Approximate computing is a popular computational paradigm wherein
the accuracy of computations is traded-off for lower energy consumption.
One common example is the use of simplified logic for obtaining the less
significant bits (LSBs) of a number. Probabilistic computing is a related
notion, and can be considered as a subset of approximate computing.
It relies on noisy components which always have a small probability
of producing a faulty output [28]. Therefore, the entire computation
is probabilistic rather than deterministic. However, the components are
uncorrelated and thus the overall error rate of the system is usually within
a tolerable limit. Such probabilistic designs have relevance in modern
and future technologies [10]. With scaled voltages at smaller technology
nodes, noise levels tend to be significant when compared to the energy
difference between logic states [12]. Additionally, the impact of soft
errors also becomes more prominent at smaller device dimensions [29].

Non-CMOS devices for Probabilistic Computing: With the in-
tegration of emerging non-CMOS devices into CMOS circuits, non-
determinism in systems is usually inevitable due to their inherent
randomness, and is often beneficial to and harnessed in the concerned ap-
plication. An example is the work in [14] where a Giant Spin Hall Effect
(GSHE) switch is used as a polymorphic gate that can be configured to
realize any of the 16 functions of 2 boolean variables. The work in [14]
was extended in [15] by moving away from deterministic computations
to probabilistic ones by exploiting the inherent stochasticity of the GSHE
switch. Such a stochastic/probabilistic gate would behave erroneously at
certain times, in which case the output of the circuit built with such
gates would not always be the same for a given input.

III. ATTACK SURFACE

In this work, we consider a circuit which is probabilistically ap-
proximate, as explained in sec. II-C. This means that the circuit not
only produces approximate outputs but also behaves probabilistically
- the same input, when applied repeatedly, does not elicit the same
response. The reason behind such probabilistic behavior could either be
noise from any source or the use of non-CMOS components behaving
probabilistically. Operating circuits under scaled voltage conditions saves
energy, and so does the use of non-CMOS devices. The resulting
erroneous behavior at the outputs of the circuit could be acceptable for
LSBs and irrelevant outputs.

We assume the threat model described in sec. II-B. In this work,
we consider widely accepted locking techniques [6, 23] applied in a
static/deterministic manner to a probabilistic circuit. We consider a
circuit error model where each logic gate in the circuit has a certain error
probability ε, which is the probability that the gate outputs the inverse
of what it should have, given its inputs. Such an error model is realistic
from the perspective of non-CMOS gates [15] and also dynamic errors
[13]. Ideally, the attacker wishes to find the correct key corresponding to
the locked circuit in the face of such uncertain behavior of the activated
chip. We emphasize that the correct key is the one which will make the
locked circuit produce the exact same input-output behavior as that of
the oracle. Even if the attacker is unable to find the correct key, (s)he
wants to find a key which can match the statistical behavior of the oracle
as closely as possible.

Existing work: The work in [15], which proposed the probabilistic
use of GSHE gates, also aims to find the correct key in a similar scenario.
The authors first show that the probabilistic behavior of the gates in the
oracle misguides the attacker (and hence a SAT solver) as (s)he may be
tricked into using a wrong output for a distinguishing input. This leads
to failure of the standard SAT attack (which was described in sec. II-B)
even at barely significant error levels2. They then propose a modified
version of the SAT attack, calling it Probabilistic SAT (PSAT), wherein
the oracle is queried multiple times with a certain DI instead of just once.
This is done to circumvent the inconsistency of the oracle’s output. Then,
if the most frequently occurring output pattern is dominant (see [15] for

2The approximate SAT attack AppSAT proposed in [19] also cannot be applied in
our threat scenario because it too would require a deterministic oracle.

meaning of dominant), it is considered as the correct output3, else one of
the output patterns is sampled with a probability equal to its frequency
of occurrence, and is chosen as the correct output. The PSAT produces
better attack results than the conventional SAT.

In this work, we propose to improve upon the PSAT attack since the
latter has the following limitations.
• The PSAT attack treats output patterns from the oracle as a whole,

and always considers only a single correct pattern for any DI in the
SAT-CNF formula. However, a probabilistic circuit (specifically, the
activated chip with the attacker) may not produce the correct output
with the highest frequency. For eg, if the output patterns 0110, 0010
and 0001 are produced by the oracle (for a given DI) 11, 7 and 2
times respectively, then 0110 will be considered as the correct output
by PSAT since it is dominant, even if the correct output is 0010.

• Moreover, for a circuit with a large no. of outputs, the probability of
appearance of the correct output may be exponentially small. As a
result, PSAT fails to return any key when the no. of circuit outputs
or the error levels in the circuit start to go up.

We devise an attack method StatSAT, and show that it not only has
a higher success rate than PSAT (an attack is successful if it returns
a key) but can also yield the correct key with high probability. In any
case, StatSAT is capable of producing a key with which the statistical
behavior of the now-unlocked circuit is very similar to that of the oracle.

IV. ATTACK FORMULATION

The crux of the StatSAT attack is the same as that of the standard
SAT attack described in sec. II-B - the SAT solver keeps finding DIs
until it narrows down to the correct key. In this section, we describe
the additional steps employed by our attack to overcome the obstacles
presented by the probabilistic behavior of the circuit.

A. Deviation from the SAT attack

The standard SAT attack [8, 9] considers a deterministic oracle and
queries it once in every iteration with a DI to obtain the corresponding
correct output. In our work, we have an oracle which behaves probabilis-
tically. Because its output is probabilistically approximate, and therefore
inconsistent, the output obtained upon applying an input just once cannot
be considered to be the correct output pattern for that input.

At this moment, let us define the Bit Error Ratio (BER) at an output
of a circuit, for a given input, as the frequency/probability with which
that output bit is erroneous for that input. In the context of our attack,
erroneous means that the output of the probabilistic oracle differs from
a deterministic version of it. For eg. consider that for an input X , a
deterministic version of the oracle produces a ‘1’ at the ith output.
Whereas our probabilistic oracle, when queried a large no. of times,
produces ‘1’ for 70% of the times and ‘0’ for the rest 30%. Then the
BER at that ith output for input X is 0.3.

To get around such inconsistent behavior of the oracle, we apply the
same input (DI) multiple times to it to get multiple output patterns, as
was done in [15]. We, however, do not try to consider the oracle’s output
patterns as a whole, and instead take an average of all patterns for each
of the circuit’s outputs. Thus, for any DI, the oracle is queried not once
but multiple times to obtain the signal probabilities of each of the output
bits.

Stated mathematically, let N be the no. of outputs in the circuit. If the
probabilistic oracle is sampled Ns times with an input X , let Y (1), Y (2)

. . .Y (Ns) be the observed binary output patterns, where each Y (j) ∈
{0, 1}N . Then the signal probability at the ith output of the oracle,
with input X , is given as

PYi = 〈Yi〉 =
1

Ns

Ns∑
j=1

(Y (j))i (1)

with every PYi ∈ [0, 1] and i = 1, 2, . . . N .
3Here (and throughout this paper) correct output pattern means what the oracle
would have output if it was not a probabilistic circuit.

At this point, we argue that simply rounding all these signal proba-
bility values (to 0 or 1, whichever is closer) may not yield the correct
output pattern corresponding to input X . One or more output bits may
have higher than 50% BER in PY for a certain input depending on how
gates within the circuit were sensitized [30].

Let us now discuss how the signal probabilities PYi obtained from
the oracle are provided to the SAT solver. The standard SAT attack uses
responses from the oracle to constrain the satisfiability of the SAT-CNF
expressions (sec. II-B). For any I/O pair (X,Y) fed to the solver, future
iterations ensure that all bits of Y are satisfied (with input X) when
DIs are obtained. However, in this work, we relax this constraint by not
having to specify all the output bits. The prime purpose of this is to avoid
having erroneous bits in the output patterns specified since these would
either lead us to a wrong key or make the SAT formula unsatisfiable.
How this is achieved is explained next.

B. Output Uncertainty
The signal probabilities PY of the oracle response tells us about the

certainty of an output bit. Let us define the uncertainty U associated
with the signal probabilities as

Ui = min(PYi , 1− PYi) i = 1 . . . N (2)
Quite naturally, PYi values close to 0.5 are associated with higher
uncertainties in the output bit. Because a boolean SAT solver would
accept only 0 or 1 as values of variables, the PYi would have to be
converted to a likely binary 0 or 1. But, we leave outputs with high
uncertainties unspecified in the constraint because these evidently have
a high BER. Thus, for any DI, the oracle output signal probability vector
PY could be translated to a binary output vector Y as

Yi =

{
round(PYi) if Ui ≤ Uλ
x (unspecified) if Ui > Uλ (3)

where Uλ is a threshold value of uncertainty above which we refrain
from specifying the rounded signal probability value as the (supposedly
correct) binary output value.

Effect on search space of key: A DI and its corresponding output
impose constraints on the possible correct key. In the standard SAT
attack, each iteration trims down this solution space by eliminating a
certain number (at least one) of wrong keys. In our StatSAT approach,
not specifying one or more of the output bits reduces the no. of wrong
keys eliminated in an iteration, with the possibility of no key being
eliminated at all4. Thus, the solution space is not pruned as much as in
the standard SAT attack in order to remain on the safe side and avoid
eliminating the correct key from consideration.

C. Estimation of Output BERs with DIs
In the previous subsection, we proposed using the uncertainty values

U as indicators of high output BERs to avoid providing wrong DIPs
to the SAT solver. While this method is effective when the BER at a
particular output is low or moderate (close to 0.5), it would not prevent
from recording wrong outputs (Y) if the BER happens to be large.
Specifically, if the BER at the ith output is larger than 1 − Uλ, then
Ui < Uλ and Yi is set to round(PYi) (which would be wrong). For
eg. if PYi = 0.3, with BER at the ith output being 0.7 (and not 0.3),
and Uλ = 0.35, then Yi = round(PYi) = 0 will be wrongly passed off
as the correct value. We shall now discuss how to prevent this kind of
a situation by predicting the possibility of having a large BER at any
output with a given DI.

Let us assume for now that the attacker is aware of the error
probability εg at each logic gate in the circuit5. With this knowledge,
the attacker can roughly estimate the BER at each of the outputs of
the circuit with a given input using the concept of Boolean Difference
Calculus [30]. It is not possible to estimate the BERs exactly without
knowledge of the correct key.

Each iteration of the SAT attack prunes the keyspace such that the keys
remaining in the solution space at the start of an iteration satisfy all of the

4We discuss later how to ensure that we make progress despite such a possibility.
5We’ll relax this assumption in sec. V and show that it doesn’t matter much

distinguishing I/O pairs of the previous iteration. These satisfying keys
are likely to provide a better estimate of output BERs with the current
DI than any key picked randomly from the entire keyspace. Therefore,
we use the SAT solver to find a certain number of satisfying keys (or as
many as remaining) and obtain the BERs separately for each of those
keys. These BERs from satisfying keys are then averaged to get the
estimated BER E ∈ [0, 1]N for that DI.

Stated formally, let (X1, Y 1) . . . (Xm−1, Y m−1) be the distinguish-
ing I/O pairs of the first m − 1 iterations, and Xm be the mth DI.
We find a certain number of satisfying keys of these m − 1 pairs -
say Nsatis (or less if that many aren’t remaining in the solution space).
Using those keys, the output BER Em of the locked circuit with Xm

is roughly estimated (using Boolean Difference Calculus [30]). This is
used to flag the output bits as potentially having high error rates, and to
decide whether or not to pass off the rounded signal probabilities to the
CNF formula. Similar to earlier (eqn. 3), the translated binary output
vector for DI Xm would finally be given as

Y mi =

{
round(PYi) if Ui ≤ Uλ and Emi ≤ Eλ
x (unspecified) otherwise (4)

where, if the estimated BER Emi for the ith output crosses threshold
Eλ, we do not specify its value irrespective of the corresponding signal
probability PYi . For eg. if the signal probability values for a 4-bit
output are PY = (0.85, 0.38, 0.20, 0.77) and BER estimate E =
(0.21, 0.28, 0.27, 0.34), then uncertainty U = (0.15, 0.38, 0.2, 0.23).
If Uλ = 0.25, Eλ = 0.30, then Y = 1x0x is the output vector, with the
2nd and 4th bits unspecified, that would be provided to the SAT solver.

D. Multiple Instances of SAT CNF Formulas
Until now we focused on how we can prevent the CNF formula from

recording wrong output bits for distinguishing input patterns, thereby
holding back information that the SAT solver needs to trim down the
keyspace. Doing so certainly keeps the correct key within the solution
space. However, after a certain point of time (i.e. a certain number of
SAT iterations), the SAT solver may no longer able to eliminate keys
because of the unspecified bits in the output vectors of the DIs. This is
evident from the repetition of a DI in 2 consecutive iterations. Thus
if the DI in the (m + 1)th iteration is same as that in the mth, it
implies that the unspecified output bits in Y m likely hold the key to
further elimination of “wrong keys”. And so querying the oracle again
with the same DI is unlikely to help since it would yield the same signal
probability vector PY as in the mth iteration, and hence the same binary
output vector Y m. Next, we describe how to get around this dead-end.

Duplication: Let us call the set of CNF formulas and the distin-
guishing I/O pairs collectively an instance of the SAT formulation. To
proceed with the attack, we propose to create, at this stage, a duplicate
(clone) of the SAT instance to be able to consider both possibilities
of an unspecified bit. Thus, if the DI Xm+1 is a repeat, we let one
of the previously unspecified bits of the binary output vector Y m

be represented differently in Y m+1 by these 2 SAT instances - one
considers a value of ‘0’ for that bit, while the other considers a ‘1’.
They differ only in that bit position of Y m+1 which we are now forced
to specify, and are identical in all other respects (both hold the same

(,)𝑋1 𝑌 1

(,)𝑋𝑚−1 𝑌 𝑚−1

End of
iteration (m-1)

SAT
solver

𝑋𝑚

Co

𝑃
𝑌

If ,

= (0.82, 0.36, 0.20, 0.71, 0.22)𝑃
𝑌

𝐸 = (0.15, 0.31, 0.13, 0.26, 0.33)

End of
iteration m

SAT
solver

= 100𝑥𝑥𝑌 𝑚+1
𝛼

= 110𝑥𝑥𝑌 𝑚+1
𝛽

End of
iteration (m+1)

(, 1𝑥0𝑥𝑥)𝑋𝑚

(,)𝑋1 𝑌 1

(,)𝑋𝑚−1 𝑌 𝑚−1

= 1𝑥0𝑥𝑥𝑌 𝑚

=𝑋𝑚+1 𝑋𝑚

(, 110𝑥𝑥)𝑋𝑚+1

(, 1𝑥0𝑥𝑥)𝑋𝑚

(,)𝑋1 𝑌 1

(, 100𝑥𝑥)𝑋𝑚+1

(, 1𝑥0𝑥𝑥)𝑋𝑚

(,)𝑋1 𝑌 1

Then

= 𝑎𝑟𝑔𝑚𝑎 = 1𝑗𝑑𝑢𝑝 𝑥𝑖𝑈𝑖

= 0.25, = 0.30𝑈𝜆 𝐸𝜆Say

DIPs

Fig. 2: Demo of duplication of SAT instances. The yellow rectangles repre-
sent the DIPs stored by the end of a certain iteration. Because Xm+1 = Xm,
the instance forks into 2 with Ym+1 being different only at bit position
jdup = 1 (as per eqn. 5).

I/O pairs of previous iterations, and also same values for the previously
specified bits of Y m+1). Quite obviously, since a bit position can have
a correct value of either 0 or 1, it is guaranteed that one of these 2
instances continues to hold correct I/O pairs (if I/O pairs accumulated
hitherto are all correct).

The choice of the specific unspecified output bit to specify during
such a SAT duplication approach is made using the uncertainty U and
estimated BER E. Among all such bits, we specify the one that has the
largest value of uncertainty Ui > Uλ since that output wire is likely to
have a high value of error in general. If none of the Ui values are larger
than Uλ, we choose the one which has the largest estimated BER Ei
for the same reason as above. The original and duplicated instances thus
differ in their Y m+1 at bit index jdup given as

jdup =

{
j = argmaxi (Ui) if Uj > Uλ

argmaxi Ei otherwise (5)
After the original SAT instance has duplicated into 2 instances, they

continue with the attack finding their own DIs for the next iteration
(which are most likely to be different6). These instances do not interact
with each other in any way and do not exchange any information. Fig.
2 gives a demonstration of the aforementioned process of duplication.

Force Proceed: The 2 instances thus formed go on finding DIs, and
whenever any of them gets stuck because of a repeated DI, it further
duplicates itself as per the rule mentioned previously. We limit the total
number of instances to a certain value, say Ninst, to avoid an explosion
in the number of instances (that might happen if the error levels in the
circuit are high) and thus to keep the attack’s time complexity within a
limit. Once the number of instances has reached the maximum allowed,
it is not possible for any of them to duplicate itself upon encountering a
repeated DI. In such a case, we forcefully proceed by specifying carefully
just one of the unspecified bits of Y m in the hope that it provides
some/enough information to the SAT solver to trim down a few wrong
keys and not repeat the DI again. Towards this, we specify that bit which
had the least estimated BER (hence least risky) by rounding the observed
signal probability. Thus if Xm+1 = Xm, and the instance is not allowed
to duplicate itself, then let

jfp = argmini(Ei I(Y mi = x)) (6)
where indicator function I(f) = 1 if f is true, and ∞ otherwise. Then,
Y m+1
jfp

= round(PYjfp
). For eg. if in fig. 2, there was no scope for

duplication, jfp = 3 since the 4th bit has the least value (0.26) of Ei
among unspecified bits. And so Y m+1 =1x01x.

Evaluation: Each of instances carries out the process of eliminating
wrong keys on its own until it can’t find any more DIs. It then returns
one key which satisfies its set of recorded I/O pairs or states that the
set cannot be satisfied by any key at all (UNSAT). When an instance
becomes UNSAT, the space occupied by it is “freed-up” to allow other
instances to duplicate themselves if necessary. After all the satisfiable
instances return a key (there can be Ninst keys at most), these keys are
then evaluated by comparing the response of the oracle with that of the
locked circuit fitted with the obtained keys. This evaluation is sort of a
check for correctness by looking for discrepancies in their responses.

Let X1 . . . Xj . . . XNeval be randomly chosen Neval input vectors,
and let PYj and PYj (K) denote the output signal probabilities with
input Xj of the oracle and of the unlocked circuit (with key K)
respectively. Let FM(K) denote the figure of merit of an obtained key
K given as

FM(K) =
1

N

N∑
i=1

max
j
|PYj − PYj (K)| (j = 1 . . . Neval) (7)

The above equation takes the difference between PY and PY (K) for
Neval input patterns, chooses the maximum difference for each of the
N output indices and computes the average of these N maximums. The
key with the smallest value of FM is chosen as the best key. The steps
of the StatSAT attack are illustrated in fig. 3 for one SAT instance.

6It may be worth mentioning that the distinguishing input is one component of
the attack that we do not control/modify in any way. It is always provided by the
SAT solver in exactly the same way as is done in the standard SAT attack.

(,) 𝑎𝑛𝑑 (,)𝑋
𝑚

𝑌
𝑚
𝛼 𝑋

𝑚
𝑌

𝑚

𝛽

Is the
SAT instance
satisfiable ?

Yes Get DI Xm,
Em, PY, U, Ym

Yes

= ?𝑋
𝑚

𝑋
𝑚−1

Can
duplicate ?

Force proceed
(follow eqn. 6)

Create 2 instances
(follow eqn. 5)

Add constraints to them :

Add constraint (,)𝑋
𝑚

𝑌
𝑚

START

𝑚 = 1

No

No

Yes

𝑚 = 𝑚 + 1

Get key (if any)
satisfying all DIPs

END

No

respectively

Fig. 3: StatSAT attack process for one SAT instance shown in a nutshell.

V. ATTACK RESULTS

For running our attack, we rely on a C++-based SAT-attack framework
(with Lingeling SAT solver) developed by [8, 15] and made open-
source. This framework was modified to implement our StatSAT attack
methodology7. Several benchmark circuits were used for evaluation from
different sources as listed in Table I. Locking techniques SFLL-HD [23]
and Strong Logic Locking (SLL) [6] were used for evaluationMost of
the results are demonstrated on the assumption that the attacker happens
to be aware of the exact value of gate error probability εg . Later when
we relax this assumption and let the attacker estimate this value, we see
that the differences aren’t significant on an average.

Benchmark Source Inputs Gates Outputs
c3540 ISCAS85 50 1669 22
c7552 ISCAS85 207 3512 108
ex1010 MCNC 10 5066 10

seq MCNC 41 3519 35
b14 ITC99 277 9767 299
b15 ITC99 485 8367 519

TABLE I: Benchmark circuits and their source

In our attack, Ninst, Uλ and Eλ are parameters that the attacker
chooses before starting the attack. In addition to the figure of merit
FM(K) calculated in eqn. 7, we also obtain, for the best key K∗, a
slightly different value that takes the average of the signal probability
differences instead of the maximum. This is simply an average hamming
distance in the signal probability domain and is given as

HD(K) =
1

Neval

Neval∑
j=1

1

N
||PYj − PYj (K)||1 (j = 1 . . . Neval) (8)

where ||.||1 is the L1-norm. HD(K) is a better statistical measure than
FM(K) for measuring the closeness of the behaviors of the oracle and
the unlocked circuit since it averages over all Neval patterns (the latter
takes the maximum and is more suitable for measuring discrepancies
while comparing amongst several keys).

We now present the results of our attacks for the circuits in table I
from various perspectives.
(A) First we show how the no. of instances Ninst required to find the
correct key increases with the gate-level error εg . Table II mentions the
attack results for these circuits with their locking technique, for several
values of εg , in terms of
• The average (over all outputs) and maximum BER of the oracle for

each εg , calculated using 100 random input vectors.
• the (maximum) no. of instances Ninst and the no. of keys found (|K|)
• the quantity HD(K∗), where K∗ is the best key.
The gate-level error probability εg (labeled A, B, . . . for each circuit for
future reference) was varied and Ninst was incremented (starting from
1) in powers of 2 until the correct key was found. For all benchmarks,
the smallest value of εg mentioned in table II is such that values slightly
larger than that required more than 1 instance. For eg. with the c7552
circuit, error levels εg ≤ 2.0% did not require more than 1 instance; but
a slightly higher value of εg = 2.25% required Ninst = 8. Also, for
each εg , we start the attack with parameters Uλ = 0.25, Eλ = 0.30.
If the attack doesn’t find a single key, we restart with lower values of
one/both. From table II, we infer that it is possible to get the correct

7The code for StatSAT can be found on Github at https://github.com/ankit-
mondal/StatSAT-attack

key even for high(er) values of εg by simply increasing the maximum
number of SAT instances allowed. Note that εg values considered for
most circuits yield avg. BERs that are significantly high.

Bench+Lock εg (in %) Avg. BER Max. BER Ninst |K| HD(K∗)
1.25 (A) 0.241 0.834 1 1 0.0192

c3540 1.50 (B) 0.269 0.852 8 7 0.0200
SFLL-HD 1.75 (C) 0.286 0.865 16 16 0.0207

2.00 (D) 0.302 0.850 64 64 0.0209
2.00 (A) 0.173 0.784 1 1 0.0122

c7552 2.25 (B) 0.182 0.784 8 1 0.0125
SFLL-HD 2.50 (C) 0.189 0.760 16 5 0.0125

3.00 (D) 0.201 0.758 16 16 0.0128
6.0 (A) 0.263 0.628 1 1 0.0195

seq 7.0 (B) 0.277 0.610 4 4 0.0201
SFLL-HD 8.0 (C) 0.300 0.628 4 4 0.0205

9.0 (D) 0.313 0.630 32 31 0.0209
0.50 (A) 0.0520 0.628 1 1 0.0087

b14 0.75 (B) 0.0668 0.724 4 1 0.0100
SFLL-HD 0.80 (C) 0.0750 0.760 4 3 0.0103

0.85 (D) 0.0759 0.776 16 16 0.0112
ex1010 0.4 (A) 0.117 0.390 1 1 0.0158

SLL 0.5 (B) 0.141 0.466 2 2 0.0171
(253-bit key) 0.6 (C) 0.167 0.510 4 4 0.0187

0.2 (A) 0.0200 0.378 1 1 0.00583
b15 0.4 (B) 0.0311 0.546 4 4 0.00796

SFLL-HD 0.5 (C) 0.0489 0.580 8 1 0.00874
0.6 (D) 0.0498 0.608 16 10 0.00939

TABLE II: Variation of Ninst required to find the correct key with error
probability εg . It is only due to sampling error that HD(K∗) is non-zero and
increasing slightly with εg . With SFLL-HD locking, 16-bit keys were used.
Attack parameters used were: Ns = 500, Nsatis = 100, Neval = 2000.

(B) Shown in fig. 4 is the number of iterations required by the SAT
instance which found the correct key for the respective values of εg
in table II. Accompanying those is the no. of iterations the standard
SAT attack would take on a deterministic version of the circuit only for
the sake of comparison (to show how much extra StatSAT needed).
Note that standard SAT was not and should not be launched on the
probabilistic circuits. Typically, iterations required by our attack is larger
than that of the standard SAT, and tends to go up with εg because higher
output BERs result in more unspecified bits in DIPs.

Fig. 4: No. of iterations of StatSAT and comparison with Standard SAT.
Labels A, B, . . . at the top of each bar correspond to εg values in table II.

(C) Of more interest is perhaps the time taken to carry out the attack.
Fig. 5 shows (i) Tattack, the time taken just for finding the keys (that
is, not counting the time required for the evaluation step) for the same
εg and (ii) Teval, the time required for evaluation of each key found
which depends on circuit size. Tattack of StatSAT is higher than that
of the standard SAT attack because of all the extra steps that our attack
requires and also of the presence of multiple instances.
(D) Next up, fig 6 depicts the trade-off between the total time spent

Fig. 5: Tattack for several εg and Teval of each key compared with standard
SAT attack time. Naturally, Teval is proportional to Neval and Ns.

on the attack (= Tattack + |K|Teval) and the quality of the best key
found in terms of FM(K∗) for various circuits and fixed value of εg .
And table III shows, for the same circuits, how HD(K∗) varies with
increasing Ninst. While both FM(K∗) and HD(K∗) typically reduce
with increasing Ninst, the differences aren’t significant, which implies
that an attacker may choose to spend less time and find a “good enough”
key rather than spend more time to find a better (or the correct) key.

A larger Ninst means that an instance has a higher chance of being
able to duplicate whenever its DI repeats, ensuring with more likelihood
that an erroneous bit is not forcefully recorded in the I/O pairs. Since not
being able to duplicate implies that an unspecified bit will be rounded
to either 0 or 1, which may not be the correct value (see explanation
around eqn. 6). However, a larger Ninst has the downside of requiring
more time to finish the attack.

Fig. 6: Dependence of FM(K∗)
on total attack time which varies
with Ninst. Numbers beside each
data point are Ninst.

Circuit c3540 b15 seq b14
εg 2.0 % 0.6 % 9 % 0.9 %

N
in
s
t

1 - - - -
2 0.0211 0.0107 - -
4 0.0210 0.0102 0.0209 0.0123
8 0.0209 0.0099 0.0209 0.0123
16 0.0210 0.0094 0.0209 0.0118
32 0.0209 0.0209 0.0114

TABLE III: Variations in HD(K∗)
of unlocked circuit with Ninst. HD in
boldfont implies that it corresponds to
the correct key. A ‘-’ indicates unsuc-
cessful attack.

(E) Let us now relax the assumption that the attacker was aware of
the value of εg . Now s/he has to guess an error, say ε′g , before starting
the attack for later estimating BERs during the attack (sec. IV-C). We
perform this by comparing (using several random primary inputs) the
output uncertainties of (i) the oracle and (ii) the locked circuit with
several random key inputs with increasing values of ε′g . When half
of the output uncertainties become comparable with a certain ε′g , we
stop increasing ε′g and choose that as our guess. Table IV mentions the
estimated error probability ε′g against the actual εg , and the resulting
HD(K∗) of the attack. These HD(K∗) values are very close to the
respective values in table II where it was assumed that the attacker had
knowledge of εg . Because ε′g was always less than εg , Eλ had to be
reduced for successfully carrying out the attack. However, these results
indicate that it is not necessary for an attacker to know (the exact value
of) εg . What is more important in the attack is to estimate the output
BERs relatively, because Eλ can be adjusted to include more/less of
oracle’s outputs within the limit of being potentially highly erroneous.

c3540 c7552 b14
εg ε′g HD(K∗) εg ε′g HD(K∗) εg ε′g HD(K∗)

1.25 0.869 0.0194 2.00 0.157 0.0123 0.50 0.244 0.0086
1.50 1.157 0.0201 2.25 0.192 0.0125 0.75 0.359 0.0100
1.75 1.374 0.0205 2.50 0.240 0.0126 0.80 0.396 0.0117
2.00 1.700 0.0208 3.00 0.420 0.0128 0.85 0.401 0.0109

TABLE IV: Attacker’s guess (ε′g) at error probability and resulting
HD(K∗). HD in boldfont implies that it corresponds to the correct key.

Comparison with PSAT: We observe the performance of the PSAT
attack in [15] by launching it on some circuits and doing 20 runs of
the attack. Table V mentions the no. of times in which PSAT ran till
completion and found a key. On the contrary, StatSAT could always
find the correct key for those circuits (compare with the corresponding
results in table II). This proves the superiority of our StatSAT attack.

Circuit c880 (32-bit key) b15 c3540 b14 c7552
εg (in %) 1.0 1.5 2.0 0.1 0.2 1.25 0.5 2.0

PSAT Successful runs 20 5 0 20 0 0 0 0
StatSAT successful ? Yes Yes Yes Yes Yes Yes Yes Yes
TABLE V: No. of runs (out of 20) in which PSAT found correct key.

VI. CONCLUSION

This paper proposes StatSAT, an attack on logic-locked circuits, in an
untrusted foundry setting, which are designed to behave probabilistically

for application in the approximate/probabilistic computing paradigm. It
highlights the drawbacks in an existing piece of work which attacks
such circuits with the same threat model, and proposes techniques to
overcome them. The attack algorithm developed manages to unlock
protected circuits within a reasonable time-frame. This work thus shows
that it is possible for an adversary based in an untrusted fab to produce
counterfeit of ICs used for fault-tolerant applications. Future work would
involve coming up with possible defenses against StatSAT.

ACKNOWLEDGEMENT

This work was supported by the National Science Foundation (NSF)
grant 1642424 and the Air Force Office of Scientific Research grant
FA9550-14-1-0351.

REFERENCES

[1] M. Rostami et al., “A primer on hardware security: Models, methods, and
metrics,” Proceedings of the IEEE, vol. 102, no. 8, pp. 1283–1295, 2014.

[2] J. A. Roy et al., “Epic: Ending piracy of integrated circuits,” in Proceedings
of the conference on Design, automation and test in Europe. ACM, 2008.

[3] S. Dupuis et al., “Logic locking: A survey of proposed methods and
evaluation metrics,” Journal of Electronic Testing, pp. 1–19, 2019.

[4] A. Chakraborty et al., “Keynote: A disquisition on logic locking,” IEEE
Trans. on Computer-Aided Design of Integrated Circuits and Systems, 2019.

[5] P. Tuyls et al., “Read-proof hardware from protective coatings,” in Intl.
Workshop on Cryptographic Hardware and Embedded Systems, 2006.

[6] J. Rajendran et al., “Security analysis of logic obfuscation,” in Proceedings
of the 49th Annual Design Automation Conference. ACM, 2012, pp. 83–89.

[7] ——, “Fault analysis-based logic encryption,” IEEE Transactions on com-
puters, vol. 64, no. 2, pp. 410–424, 2013.

[8] P. Subramanyan et al., “Evaluating the security of logic encryption algo-
rithms,” in Int. Sym. on Hardware Oriented Security & Trust. IEEE, 2015.

[9] M. El Massad et al., “Integrated circuit (ic) decamouflaging: Reverse
engineering camouflaged ics within minutes.” in NDSS, 2015, pp. 1–14.

[10] K. V. Palem et al., “Sustaining moore’s law in embedded computing
through probabilistic and approximate design: retrospects and prospects,”
in Proceeding of the 2009 CASES. ACM, 2009, pp. 1–10.

[11] C.-Y. Chen et al., “Exploiting approximate computing for deep learning
acceleration,” in Design, Automation & Test in Europe. IEEE, 2018.

[12] Y. Li et al., “Low-power noise-immune nanoscale circuit design using
coding-based partial mrf method,” IEEE Journal of Solid-State Circuits,
vol. 53, no. 8, pp. 2389–2398, 2018.

[13] T. Rejimon et al., “Probabilistic error modeling for nano-domain logic
circuits,” IEEE Trans. on VLSI Systems, vol. 17, no. 1, pp. 55–65, 2008.

[14] S. Patnaik et al., “Advancing hardware security using polymorphic and
stochastic spin-hall effect devices,” in DATE. IEEE, 2018, pp. 97–102.

[15] ——, “Spin-orbit torque devices for hardware security: From deterministic
to probabilistic regime,” IEEE Trans. on Computer-Aided Design, 2019.

[16] C. Yu et al., “Incremental sat-based reverse engineering of camouflaged
logic circuits,” IEEE TCAD, vol. 36, no. 10, pp. 1647–1659, 2017.

[17] Y. Xie et al., “Mitigating sat attack on logic locking,” in Intl. Conf. on
Cryptographic Hardware and Embedded Systems. Springer, 2016.

[18] M. Yasin et al., “Sarlock: Sat attack resistant logic locking,” in Intl. Symp.
on Hardware Oriented Security and Trust. IEEE, 2016, pp. 236–241.

[19] K. Shamsi et al., “Appsat: Approximately deobfuscating integrated circuits,”
in 2017 HOST. IEEE, 2017, pp. 95–100.

[20] M. Yasin et al., “Removal attacks on logic locking and camouflaging
techniques,” IEEE Transactions on Emerging Topics in Computing, 2017.

[21] X. Xu et al., “Novel bypass attack and bdd-based tradeoff analysis against
all known logic locking attacks,” in Intl. Conf. on CHES. Springer, 2017.

[22] H. M. Kamali et al., “Full-lock: Hard distributions of sat instances for
obfuscating circuits using fully configurable logic and routing blocks,” in
Proceedings of the Design Automation Conference. ACM, 2019, p. 89.

[23] M. Yasin et al., “Provably-secure logic locking: From theory to practice,” in
SIGSAC Conf. on Computer and Communications Security. ACM, 2017.

[24] A. Sengupta et al., “Atpg-based cost-effective, secure logic locking,” in 2018
IEEE 36th VLSI Test Symposium (VTS). IEEE, 2018, pp. 1–6.

[25] F. Yang et al., “Stripped functionality logic locking with hamming distance
based restore unit (sfll-hd)–unlocked,” IEEE TIFS, 2019.

[26] P. Chakraborty et al., “Sail: Machine learning guided structural analysis
attack on hardware obfuscation,” in AsianHOST. IEEE, 2018, pp. 56–61.

[27] D. Sirone et al., “Functional analysis attacks on logic locking,” in Design,
Automation & Test in Europe (DATE). IEEE, 2019, pp. 936–939.

[28] J. Han et al., “Approximate computing: An emerging paradigm for energy-
efficient design,” in 18th European Test Symposium (ETS). IEEE, 2013.

[29] R. Xiao et al., “Gate-level circuit reliability analysis: A survey,” VLSI
Design, vol. 2014, p. 4, 2014.

[30] N. Mohyuddin et al., “Probabilistic error propagation in a logic circuit using
the boolean difference calculus,” in Advanced Techniques in Logic Synthesis,
Optimizations and Applications. Springer, 2011, pp. 359–381.

