MICHAEL ZUZAK

Assistant Professor, Department of Computer Engineering \diamond Rochester Institute of Technology

mjzeec@rit.edu \diamond mzuzak.github.io \diamond (585) 475-2312

ACADEMIC APPOINTMENTS

Assistant Professor, Department of Computer Engineering Rochester Institute of Technology	August 2022 - Present
\cdot Research Interests: Hardware Security, Digital VLSI/CAD, Computer Architecture	
EDUCATION	
Ph.D., Electrical Engineering University of Maryland, College Park	August 2017 - August 2022
 ARCS/MWC Named Graduate Scholar, Future Faculty Fellow Advisor: Prof. Ankur Srivastava Thesis: Designing Effective Logic Obfuscation: Exploring Beyond Gate-Level Boundar 	ies
M.S., Electrical Engineering University of Maryland, College Park	August 2014 - May 2016
 Advisor: Prof. Donald Yeung Thesis: Exploiting Multigrain Parallelism on Heterogeneous Processors 	
B.S., Electrical Engineering (<i>Cum Laude</i>) University of Maryland, College Park	August 2010 - May 2014
 University of Maryland Honors College, University Honors Citation 	
RESEARCH EXPERIENCE	
University of Maryland, College Park Graduate Research Assistant with Prof. Ankur Srivastava	August 2017 - August 2022
• Research Area: Hardware Security - Protecting integrated circuits from hardware troja	ans, piracy, and reverse engineering
Naval Research Laboratory, Surface Electronic Warfare Systems Branch Electronics Engineer (Full-Time)	August 2015 - June 2018
 Research Area: Digital Signal Processing - Wide-band, high-speed digital signal proce Primary contributor of digital design and digital signal processing capabilities for curren (UON) system for U.S. Navy 	ssing for digital RF memories tly fielded urgent operational needs
University of Maryland, College Park Graduate Researcher with Prof. Donald Yeung	August 2014 - May 2016
• Research Area: Computer Architecture - Novel execution models for heterogeneous sy	vstems
PROJECT SPONSORS AND GRANTS	

Total as PI/Co-PI: \$235,967

- [G5] ESL Global Cybersecurity Institute: "Creating a Simulation and Emulation Platform for Mitigating Threats from Hardware Trojans Infecting a Network-on-Chip (NoC)," 05/15/2024 - 09/15/2024, Role: Co-Pl
- [G4] Eaton Corporation: "Hardware Anomaly and Zero-Day Detection in Resource-Constrained Microcontrollers Using Software Property Enforcement," 06/29/2023 - 06/28/2024, Role: Sole-PI
- [G3] NSF: "CRII: SaTC: Design Space Modeling for Logic Obfuscation to Enable System-Wide Security during IC Manufacture and Test," 03/15/2023 03/14/2025, Role: Sole-PI
- [G2] RIT KGCOE: "Mitigating Optical Side-Channel Attacks on Integrated Circuits through Al-Driven Design Automation," 05/01/2023 - 08/31/2024, Role: Sole-PI
- [G1] KEEN: "Improving Student Understanding of Non-Ideal Transistors," Role: Sole-PI

PUBLICATIONS

Journals:

- [J6] M. Zuzak, Y. Liu, and A. Srivastava, "Security-Aware Resource Binding to Enhance Logic Obfuscation," in IEEE Trans. on Computer Aided Design of Integrated Circuits and Systems (TCAD), 2023
- [J5] M. Zuzak, Y. Liu, and A. Srivastava, "Evaluating the Security of Logic-Locked Probabilistic Circuits," in IEEE Trans. on Computer Aided Design of Integrated Circuits and Systems (TCAD), 2021
- [J4] Y. Liu, M. Zuzak, Y. Xie, A. Chakraborty, A. Srivastava, "Robust and Attack Resilient Logic Locking with a High Application-Level Impact," in ACM Journal on Emerging Technologies in Computing Systems (JETC), 2021
- [J3] M. Zuzak, Y. Liu, and A. Srivastava, "Trace Logic Locking: Improving the Parametric Space of Logic Locking," in IEEE Trans. on Computer Aided Design of Integrated Circuits and Systems (TCAD), 2020
- [J2] A. Chakraborty, N. Jayasankaran, Y. Liu, J. Rajendran, O. Sinanoglu, A. Srivastava, Y. Xie, M. Yasin, and M. Zuzak, "Keynote: A Disquisition on Logic Locking," in IEEE Trans. on Computer Aided Design of Integrated Circuits and Systems (TCAD), 2019
- [J1] D. Gerzhoy, X. Sun, M. Zuzak, and D. Yeung, "Exploiting Nested MIMD-SIMD Parallelism on Heterogeneous Microprocessors," in ACM Transactions on Architecture and Code Optimization (TACO), 2019

Conferences:

- [C17] K. Nakano, M. Nakazawa, and M. Zuzak, "Complementing Vehicle Trajectories Using Two Camera Viewpoints," in Proceedings of the IEEE Conference on Consumner Electronics (ICCE), 2024 (Accepted)
- [C16] H. Xu, D. Liu, C. Merkel, and M. Zuzak, "Exploiting Logic Locking for a Neural Trojan Attack on Machine Learning Accelerators," in Proceedings of the Great Lakes Symposium on VLSI (GLSVLSI), 2023
- [C15] D. Xing, M. Zuzak, and A. Srivastava, "Low Overhead System-Level Obfuscation through Hardware Resource Sharing," in Proceedings of the International Symposium on Quality Electronic Design (ISQED), 2023
- [C14] I. McDaniel, M. Zuzak, and A. Srivastava, "A Linear-Time Structural Attack on SAT-Hard Instances in Logic Obfuscation," in Proceedings of the International Conference on Computer Design (ICCD), 2022
- [C13] M. Zuzak, Y. Liu, I. McDaniel, and A. Srivastava, "A Combined Logical and Physical Attack on Logic Obfuscation," in Proceedings of the ACM/IEEE International Conference on Computer-Aided Design (ICCAD), 2022
- [C12] I. McDaniel, M. Zuzak, and A. Srivastava, "A Black-Box Sensitization Attack on SAT-Hard Instances in Logic Obfuscation," in Proceedings of the IEEE International Conference on Computer Design (ICCD), 2022
- [C11] Y. Liu, M. Zuzak, D. Xing, I. McDaniel, P. Mittu, O. Ozbay, A. Akib, and A. Srivastava, "A Survey on Side-Channelbased Reverse Engineering Attacks on Deep Neural Networks," in Proceedings of the IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS), 2022
- [C10] M. Zuzak, Y. Liu, and A. Srivastava, "A Resource Binding Approach to Logic Obfuscation," in Proceedings of the Design Automation Conference (DAC), 2021 (Best Paper Candidate)
- [C9] B. Tan, S. Garg, R. Karri, Y. Liu, M. Zuzak, ..., W. Savage, "Independent Verification and Validation of Security-Aware EDA Tools and IP," in Proceedings of the Design Automation Conference (DAC), 2021
- [C8] M. Zuzak and A. Srivastava, "ObfusGEM: Enhancing Processor Design Obfuscation Through Security-Aware On-Chip Memory and Data Path Design," in Proceedings of the International Symposium on Memory Systems (MEMSYS), 2020
- [C7] A. Mondal, M. Zuzak, and A. Srivastava, "StatSAT: A Boolean Satisfiability Attack on Logic Locking for Probabilistic Circuits," in Proceedings of the Design Automation Conference (DAC), 2020
- [C6] Y. Liu, M. Zuzak and A. Srivastava, "Strong Anti-SAT: Secure and Effective Logic Locking," in Proceedings of the International Symposium on Quality Electronic Design (ISQED), 2020
- [C5] Y. Liu, A. Mondal, A. Chakraborty, M. Zuzak, N. Jacobson, D. Xing, and A. Srivastava, "A Survey on Neural Trojans," in Proceedings of the International Symposium on Quality Electronic Design (ISQED), 2020
- [C4] M. Zuzak, M. Fitelson, S. Montano, and A. Srivastava, "Provable Detection and Location of Hardware Trojans with Linear Hybrid Cellular Automata," in Proceedings of the Government Microcircuit Applications and Critical Technology Conference (GOMACTECH), 2020
- [C3] M. Zuzak and A. Srivastava, "Memory Locking: An Automated Approach to Processor Design Obfuscation," in Proceedings of the IEEE Computer Society Annual Symposium on VLSI (ISVLSI), 2019
- [C2] Z. Yang, M. Zuzak, and A. Srivastava, "HMCTherm: A Cycle-accurate HMC Simulator Integrated with Detailed Power and Thermal Simulation," in Proceedings of the International Symposium on Memory Systems (MEMSYS), 2018

[C1] M. Zuzak and D. Yeung, "Exploiting Multi-Loop Parallelism on Heterogeneous Microprocessors," in Proceedings of the International Workshop on Programmability and Architectures for Heterogeneous Multicores (MULTIPROG), 2017 (Awarded Best Paper)

Book Chapters:

[B1] Y. Liu, A. Mondal, A. Chakraborty, M. Zuzak, N. Jacobson, D. Xing, and A. Srivastava, "Neural Trojans," in Encyclopedia of Cryptography, Security and Privacy, 2021

Technical Reports:

- [T4] Z. Cheng, H. Choi, J. Liang, S. Feng, G. Tao, D. Liu, M. Zuzak, and X. Zhang, "Fusion is Not Enough: Single-Modal Attacks to Compromise Fusion Models in Autonomous Driving," in ArXiv preprint arXiv:2304.14614, 2023
- [T3] M. Zuzak, "Designing Effective Logic Obfuscation: Exploring Beyond Gate-Level Boundaries" (Ph.D. Thesis)
- [T2] B. Tan, R. Karri, N. Limaye, A. Sengupta, ..., **M. Zuzak**, A. Srivastava, et al., "Benchmarking at the Frontier of Hardware Security: Lessons from Logic Locking," in arXiv preprint arXiv:2006.06806, 2021
- [T1] M. Zuzak, "Exploiting Nested Parallelism on Heterogeneous Processors" (M.S. Thesis)

INVITED TALKS/POSTER PRESENTATIONS

- [P8] M. Zuzak, "Designing Obfuscated ICs for System-Wide Security during IC Manufacture and Test," Great Lakes Security Day (GLSD), 2023
- [P7] M. Zuzak, "Hardware: The Foundation of Security," at Electrical and Computer Engineering Research Seminar, Rochester Institute of Technology (RIT), 2022
- [P6] M. Zuzak, "New Horizons in Hardware Security," at Rochester Institute of Technology (RIT), 2021
- [P5] M. Zuzak, "Designing Obfuscated Systems for Enhanced Hardware-Oriented Security," at SIGDA Design Automation Conference (DAC) PhD Forum, 2021
- [P4] M. Zuzak, "Securing Hardware in a Globalized Supply-Chain," at ARCS Scholar Reception, 2020
- [P3] M. Zuzak, "Building Functional ICs with Approximate Keys," at CSAW'19 Logic Locking Conquest Finals, 2019
- [P2] M. Zuzak, "Achieving Hardware Security: Design and Fabrication of Secure Integrated Circuits," at ARCS Scholar Reception, 2019
- [P1] M. Zuzak and A. Srivastava, "Memory Locking: An Automated Approach to Processor Design Obfuscation," in Design Automation Conference (DAC), 2019

OPEN-SOURCE SOFTWARE

CLAP Attack- A Combined Logical and Physical Attack on Logic Obfuscation

• The CLAP attack is an open-source attack on logic obfuscation utilizing both logical and physical leakage to reverseengineer the key of an obfuscated circuit. The physical portion of the CLAP attack logically guides an electro-optical probe to extract key leakage through electro-optical frequency mapping (EOFM). The logical portion of the CLAP attack relies on the open-source SAT attack toolkit by Subramanyan et al.

ObfusGEM - A Cycle-Accurate Processor Design Obfuscation Simulator

ObfusGEM is a simulation framework for the evaluation of processor design obfuscation. It implements an error injection
framework inspired by the architectural error resilience community to close-the-loop between gate-level obfuscation and
its application-level impact. We provide a library of existing hardware security techniques and configurations along with
ObfusGEM to enable the design and evaluation of hardware security configurations for specific architectures or devices.

StatSAT - A Statistical Boolean Satisfiablity Attack on Logic Locking

• StatSAT is an open-source SAT-based attack against probabilistic circuits that have been secured by logic locking.

HMCTherm - A Cycle-Accurate Simulator for the Hybrid Memory Cube with Built-In Thermal Analysis

• HMCTherm is a comprehensive simulation framework for a Stacked-Memory-on-CPU architecture. Given the architectural description of a multi-core CPU using hybrid memory cubes (HMC), HMCTherm can simulate the 3D thermal profile (both transient and static) of the HMCs for an arbitrary computing workload.

TEACHING

CMPE361: Introduction to Hardware Security Rochester Institute of Technology Instructor · Course proposed, developed, and introduced by Prof. Michael Zuzak. CMPE630/530: Digital Integrated Circuit Design Spring 2023 Rochester Institute of Technology Instructor ENEE640: Digital CMOS VLSI Design Spring 2021 Co-Instructor with Prof. Ankur Srivastava University of Maryland, College Park **ENEE359F: Advanced Verilog Design** Spring 2015 Graduate Teaching Assistant University of Maryland, College Park

Fall 2023

Fall 2014

University of Maryland, College Park

ENEE359F: Advanced Verilog Design

Graduate Teaching Assistant

· Awarded Department of Electrical and Computer Engineering Distinguished Teaching Assistant Award

STUDENT ADVISING

Ph.D. Students: Robi Paul Summer 2023 - Present · James Liang (Co-Advised with Prof. Dongfang Liu) Spring 2023 - Present M.S. Students (Thesis): · Long Lam (Awarded 2024 CE Department BS/MS Delegate) Summer 2023 - Present Sydale John Ayi (NSF LSAMP Scholar) Spring 2023 - Present · Thomas Wojtal (Awarded 2024 CE Department MS Delegate) Fall 2022 - Present · Katsuaki Nakano (Co-Advised with Prof. Minoru Nakazawa) Fall 2022 - Present Jacob Thomas Spring 2023 - Fall 2023 Thesis: Software-Based Property Enforcement for Detecting Hardware Anomalies M.S. Students (Project): Robert Reed Fall 2023 - Present Aaron Schulte Spring 2023 - Present Aubrey Tarmu Fall 2022 - Present Yuyang Wang Fall 2022 - Present Ryan Blow Fall 2022 - Present B.S. Students (Co-Op/Internship): Fall 2023 - Present Chris Nokes Maksym Melnyk Fall 2022 - Present

PROFESSIONAL SERVICE

Chair/Co-Chair:

· Co-Chair for 2023 ACM Student Research Competition at ICCAD (SRC@ICCAD'23)

Technical Program Committee Member:

- 2024 IEEE/ACM Design Automation Conference (DAC)
- 2024 Hardware Oriented Security and Trust (HOST)
- 2023 Great Lakes Symposium on VLSI (GLSVLSI)
- 2023 IEEE International System-on-Chip Conference (SOCC)
- 2023 Workshop on Attacks and Solutions in Hardware Security (ASHES)

Special Session Organizer:

 "Machine Learning and Hardware Security: A Winning Combo!," at the Great Lakes Symposium on VLSI (GLSVLSI) – Organizers: A. Rezaei, M. Zuzak, K. Shamsi, and P. Beerel

Session Chair/Co-Chair:

• 2023 Great Lakes Symposium on VLSI (GLSVLSI)

Journal Reviewer:

- · IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems (TCAD) 2020, 2021, 2023
- · ACM Journal on Emerging Technologies in Computing Systems (JETC) 2023
- · Springer Journal of Cryptographic Engineering (JCEN) 2023
- Springer Analog Integrated Circuits and Signal Processing 2022

Conference Sub-Reviewer:

- · 2024 Design, Automation and Test in Europe Conference (DATE)
- · 2023 IEEE International Symposium on On-Line Testing and Robust System Design (IOLTS)
- · 2021 IEEE/ACM International Symposium on Microarchitecture (MICRO)
- · 2021 IEEE/ACM Design Automation Conference (DAC)
- · 2020 IEEE International Symposium on Circuits and Systems (ISCAS)

Judge:

· 2022 ACM Student Research Competition at ICCAD (SRC@ICCAD'22)

HONORS AND AWARDS

- · KEEN New Faculty Mini-Fellowship 2023
- Best Paper Candidate at the Design Automation Conference (DAC) 2021
- · Future Faculty Fellow for the Clark School of Engineering at the University of Maryland, College Park
- · Department of Electrical and Computer Engineering Distinguished Teaching Assistant Award
- ARCS/MWC Named Graduate Scholar (2019-2021)
- · Edison Memorial Graduate Fellowship, Naval Research Laboratory
- Clark School of Engineering Distinguished Graduate Fellowship
- CSAW 2019 Logic Locking Conquest Finalist
- Best Paper at MULTIPROG-2017
- $\cdot\,$ On the Spot Award, Naval Research Laboratory
- Northrop Grumman Master's Fellowship
- NSF Student Travel Grant for ISVLSI 2019
- University of Maryland Dean's Scholarship
- · Association of Old Crows' (AOC) Scholarship